Active Sensing for Continuous State and Action Spaces via Task-Action Entropy Minimization.

Tipakorn Greigarn, M Cenk Çavuşoğlu
{"title":"Active Sensing for Continuous State and Action Spaces via Task-Action Entropy Minimization.","authors":"Tipakorn Greigarn,&nbsp;M Cenk Çavuşoğlu","doi":"10.1109/IROS.2016.7759688","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, a new task-oriented active-sensing method is presented. Most active sensing methods choose sensing actions that minimize the uncertainty of the state according to some information-theoretic measure. While this is reasonable for most applications, minimizing state uncertainty may not be most relevant when the state information is used to perform a task. This is because the uncertainty in some subspace of the state space could have more impact on the performance of the task than the others at a given time. The active-sensing method presented in this paper takes the task into account when selecting sensing actions by minimizing the uncertainty in future task action.</p>","PeriodicalId":74523,"journal":{"name":"Proceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE/RSJ International Conference on Intelligent Robots and Systems","volume":"2016 ","pages":"4678-4684"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/IROS.2016.7759688","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE/RSJ International Conference on Intelligent Robots and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2016.7759688","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2016/12/1 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, a new task-oriented active-sensing method is presented. Most active sensing methods choose sensing actions that minimize the uncertainty of the state according to some information-theoretic measure. While this is reasonable for most applications, minimizing state uncertainty may not be most relevant when the state information is used to perform a task. This is because the uncertainty in some subspace of the state space could have more impact on the performance of the task than the others at a given time. The active-sensing method presented in this paper takes the task into account when selecting sensing actions by minimizing the uncertainty in future task action.

Abstract Image

Abstract Image

基于任务-动作熵最小化的连续状态和动作空间主动感知。
本文提出了一种新的面向任务的主动感知方法。大多数主动感知方法都是根据一定的信息论度量来选择使状态不确定性最小化的感知行为。虽然这对大多数应用程序来说是合理的,但是当使用状态信息执行任务时,最小化状态不确定性可能不是最相关的。这是因为在给定时间,状态空间的某些子空间中的不确定性可能比其他子空间对任务性能的影响更大。本文提出的主动感知方法在选择感知动作时考虑到任务本身,使未来任务动作的不确定性最小化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信