2022 Review of Data-Driven Plasma Science

IF 1.5 4区 物理与天体物理 Q3 PHYSICS, FLUIDS & PLASMAS
Rushil Anirudh;Rick Archibald;M. Salman Asif;Markus M. Becker;Sadruddin Benkadda;Peer-Timo Bremer;Rick H. S. Budé;C. S. Chang;Lei Chen;R. M. Churchill;Jonathan Citrin;Jim A. Gaffney;Ana Gainaru;Walter Gekelman;Tom Gibbs;Satoshi Hamaguchi;Christian Hill;Kelli Humbird;Sören Jalas;Satoru Kawaguchi;Gon-Ho Kim;Manuel Kirchen;Scott Klasky;John L. Kline;Karl Krushelnick;Bogdan Kustowski;Giovanni Lapenta;Wenting Li;Tammy Ma;Nigel J. Mason;Ali Mesbah;Craig Michoski;Todd Munson;Izumi Murakami;Habib N. Najm;K. Erik J. Olofsson;Seolhye Park;J. Luc Peterson;Michael Probst;David Pugmire;Brian Sammuli;Kapil Sawlani;Alexander Scheinker;David P. Schissel;Rob J. Shalloo;Jun Shinagawa;Jaegu Seong;Brian K. Spears;Jonathan Tennyson;Jayaraman Thiagarajan;Catalin M. Ticoş;Jan Trieschmann;Jan van Dijk;Brian Van Essen;Peter Ventzek;Haimin Wang;Jason T. L. Wang;Zhehui Wang;Kristian Wende;Xueqiao Xu;Hiroshi Yamada;Tatsuya Yokoyama;Xinhua Zhang
{"title":"2022 Review of Data-Driven Plasma Science","authors":"Rushil Anirudh;Rick Archibald;M. Salman Asif;Markus M. Becker;Sadruddin Benkadda;Peer-Timo Bremer;Rick H. S. Budé;C. S. Chang;Lei Chen;R. M. Churchill;Jonathan Citrin;Jim A. Gaffney;Ana Gainaru;Walter Gekelman;Tom Gibbs;Satoshi Hamaguchi;Christian Hill;Kelli Humbird;Sören Jalas;Satoru Kawaguchi;Gon-Ho Kim;Manuel Kirchen;Scott Klasky;John L. Kline;Karl Krushelnick;Bogdan Kustowski;Giovanni Lapenta;Wenting Li;Tammy Ma;Nigel J. Mason;Ali Mesbah;Craig Michoski;Todd Munson;Izumi Murakami;Habib N. Najm;K. Erik J. Olofsson;Seolhye Park;J. Luc Peterson;Michael Probst;David Pugmire;Brian Sammuli;Kapil Sawlani;Alexander Scheinker;David P. Schissel;Rob J. Shalloo;Jun Shinagawa;Jaegu Seong;Brian K. Spears;Jonathan Tennyson;Jayaraman Thiagarajan;Catalin M. Ticoş;Jan Trieschmann;Jan van Dijk;Brian Van Essen;Peter Ventzek;Haimin Wang;Jason T. L. Wang;Zhehui Wang;Kristian Wende;Xueqiao Xu;Hiroshi Yamada;Tatsuya Yokoyama;Xinhua Zhang","doi":"10.1109/TPS.2023.3268170","DOIUrl":null,"url":null,"abstract":"Data-driven science and technology offer transformative tools and methods to science. This review article highlights the latest development and progress in the interdisciplinary field of data-driven plasma science (DDPS), i.e., plasma science whose progress is driven strongly by data and data analyses. Plasma is considered to be the most ubiquitous form of observable matter in the universe. Data associated with plasmas can, therefore, cover extremely large spatial and temporal scales, and often provide essential information for other scientific disciplines. Thanks to the latest technological developments, plasma experiments, observations, and computation now produce a large amount of data that can no longer be analyzed or interpreted manually. This trend now necessitates a highly sophisticated use of high-performance computers for data analyses, making artificial intelligence and machine learning vital components of DDPS. This article contains seven primary sections, in addition to the introduction and summary. Following an overview of fundamental data-driven science, five other sections cover widely studied topics of plasma science and technologies, i.e., basic plasma physics and laboratory experiments, magnetic confinement fusion, inertial confinement fusion and high-energy-density physics, space and astronomical plasmas, and plasma technologies for industrial and other applications. The final Section before the summary discusses plasma-related databases that could significantly contribute to DDPS. Each primary Section starts with a brief introduction to the topic, discusses the state-of-the-art developments in the use of data and/or data-scientific approaches, and presents the summary and outlook. Despite the recent impressive signs of progress, the DDPS is still in its infancy. This article attempts to offer a broad perspective on the development of this field and identify where further innovations are required.","PeriodicalId":450,"journal":{"name":"IEEE Transactions on Plasma Science","volume":"51 7","pages":"1750-1838"},"PeriodicalIF":1.5000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/27/10225460/10214236.pdf","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Plasma Science","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/10214236/","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 10

Abstract

Data-driven science and technology offer transformative tools and methods to science. This review article highlights the latest development and progress in the interdisciplinary field of data-driven plasma science (DDPS), i.e., plasma science whose progress is driven strongly by data and data analyses. Plasma is considered to be the most ubiquitous form of observable matter in the universe. Data associated with plasmas can, therefore, cover extremely large spatial and temporal scales, and often provide essential information for other scientific disciplines. Thanks to the latest technological developments, plasma experiments, observations, and computation now produce a large amount of data that can no longer be analyzed or interpreted manually. This trend now necessitates a highly sophisticated use of high-performance computers for data analyses, making artificial intelligence and machine learning vital components of DDPS. This article contains seven primary sections, in addition to the introduction and summary. Following an overview of fundamental data-driven science, five other sections cover widely studied topics of plasma science and technologies, i.e., basic plasma physics and laboratory experiments, magnetic confinement fusion, inertial confinement fusion and high-energy-density physics, space and astronomical plasmas, and plasma technologies for industrial and other applications. The final Section before the summary discusses plasma-related databases that could significantly contribute to DDPS. Each primary Section starts with a brief introduction to the topic, discusses the state-of-the-art developments in the use of data and/or data-scientific approaches, and presents the summary and outlook. Despite the recent impressive signs of progress, the DDPS is still in its infancy. This article attempts to offer a broad perspective on the development of this field and identify where further innovations are required.
2022数据驱动等离子体科学综述
数据驱动的科学和技术为科学提供了变革性的工具和方法。本文综述了数据驱动等离子体科学(data-driven plasma science, DDPS)跨学科领域的最新发展和进展,即数据和数据分析对等离子体科学的发展具有重要的推动作用。等离子体被认为是宇宙中最普遍的可观测物质形式。因此,与等离子体相关的数据可以覆盖非常大的空间和时间尺度,并经常为其他科学学科提供重要信息。由于最新的技术发展,等离子体实验、观察和计算现在产生了大量的数据,这些数据不能再手工分析或解释。这一趋势现在需要高度复杂地使用高性能计算机进行数据分析,使人工智能和机器学习成为DDPS的重要组成部分。本文除引言和结束语外,主要包括七个部分。在对基础数据驱动科学的概述之后,其他五个部分涵盖了等离子体科学和技术的广泛研究主题,即基础等离子体物理和实验室实验,磁约束聚变,惯性约束聚变和高能量密度物理,空间和天文等离子体,以及工业和其他应用的等离子体技术。摘要之前的最后一节讨论了可能对DDPS有重大贡献的等离子体相关数据库。每个主要部分都以对主题的简要介绍开始,讨论数据和/或数据科学方法使用的最新发展,并提出总结和展望。尽管最近取得了令人印象深刻的进展,但DDPS仍处于起步阶段。本文试图对该领域的发展提供一个广阔的视角,并确定需要进一步创新的地方。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Plasma Science
IEEE Transactions on Plasma Science 物理-物理:流体与等离子体
CiteScore
3.00
自引率
20.00%
发文量
538
审稿时长
3.8 months
期刊介绍: The scope covers all aspects of the theory and application of plasma science. It includes the following areas: magnetohydrodynamics; thermionics and plasma diodes; basic plasma phenomena; gaseous electronics; microwave/plasma interaction; electron, ion, and plasma sources; space plasmas; intense electron and ion beams; laser-plasma interactions; plasma diagnostics; plasma chemistry and processing; solid-state plasmas; plasma heating; plasma for controlled fusion research; high energy density plasmas; industrial/commercial applications of plasma physics; plasma waves and instabilities; and high power microwave and submillimeter wave generation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信