Adaptive Nonparametric Kinematic Modeling of Concentric Tube Robots.

Georgios Fagogenis, Christos Bergeles, Pierre E Dupont
{"title":"Adaptive Nonparametric Kinematic Modeling of Concentric Tube Robots.","authors":"Georgios Fagogenis, Christos Bergeles, Pierre E Dupont","doi":"10.1109/IROS.2016.7759636","DOIUrl":null,"url":null,"abstract":"<p><p>Concentric tube robots comprise telescopic precurved elastic tubes. The robot's tip and shape are controlled via relative tube motions, <i>i.e.</i> tube rotations and translations. Non-linear interactions between the tubes, <i>e.g.</i> friction and torsion, as well as uncertainty in the physical properties of the tubes themselves, <i>e.g.</i> the Young's modulus, curvature, or stiffness, hinder accurate kinematic modelling. In this paper, we present a machine-learning-based methodology for kinematic modelling of concentric tube robots and <i>in situ</i> model adaptation. Our approach is based on Locally Weighted Projection Regression (LWPR). The model comprises an ensemble of linear models, each of which locally approximates the original complex kinematic relation. LWPR can accommodate for model deviations by adjusting the respective local models at run-time, resulting in an adaptive kinematics framework. We evaluated our approach on data gathered from a three-tube robot, and report high accuracy across the robot's configuration space.</p>","PeriodicalId":74523,"journal":{"name":"Proceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE/RSJ International Conference on Intelligent Robots and Systems","volume":"2016 ","pages":"4324-4329"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5510657/pdf/nihms873674.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE/RSJ International Conference on Intelligent Robots and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2016.7759636","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2016/12/1 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Concentric tube robots comprise telescopic precurved elastic tubes. The robot's tip and shape are controlled via relative tube motions, i.e. tube rotations and translations. Non-linear interactions between the tubes, e.g. friction and torsion, as well as uncertainty in the physical properties of the tubes themselves, e.g. the Young's modulus, curvature, or stiffness, hinder accurate kinematic modelling. In this paper, we present a machine-learning-based methodology for kinematic modelling of concentric tube robots and in situ model adaptation. Our approach is based on Locally Weighted Projection Regression (LWPR). The model comprises an ensemble of linear models, each of which locally approximates the original complex kinematic relation. LWPR can accommodate for model deviations by adjusting the respective local models at run-time, resulting in an adaptive kinematics framework. We evaluated our approach on data gathered from a three-tube robot, and report high accuracy across the robot's configuration space.

Abstract Image

Abstract Image

同心管机器人的自适应非参数运动学建模
同心管机器人由伸缩式预弯弹性管组成。机器人的顶端和形状通过管子的相对运动(即管子的旋转和平移)来控制。管子之间的非线性相互作用(如摩擦和扭转)以及管子本身的物理特性(如杨氏模量、曲率或刚度)的不确定性,阻碍了精确的运动学建模。在本文中,我们介绍了一种基于机器学习的同心管机器人运动学建模和原位模型适配方法。我们的方法基于局部加权投影回归(LWPR)。该模型由一系列线性模型组成,每个模型都能局部逼近原始的复杂运动学关系。LWPR 可以通过在运行时调整各自的局部模型来适应模型偏差,从而形成一个自适应运动学框架。我们对从三管机器人上收集的数据进行了评估,结果表明我们的方法在机器人的配置空间内具有很高的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信