{"title":"Parameter Optimization for Multistage Reluctance Coil Launcher With Residual Energy Recovery and Utilization Mode","authors":"Lingshuo Kong;Haitao Li;Bo Zhao;Jiaqi Zhao;Changyong Hu;Peng Zhang","doi":"10.1109/TPS.2023.3286986","DOIUrl":null,"url":null,"abstract":"Launch efficiency is an important indicator to judge the performance of electromagnetic launchers. The goal of the conventional parameter optimization method for multistage launch is to maximize projectile kinetic energy in each stage acceleration. For reluctance coil launchers with residual recovery and utilization mode, the effect of the launcher parameters on the recovery energy should be considered in addition to the kinetic energy of the projectile. In this article, the feasibility of the model and the correctness of the original model are first verified by a four-stage launching experiment. Then, the influence of the drive coil parameters on the projectile acceleration and energy recovery is analyzed through theoretical analysis. In addition, a drive coil parameter optimization method for multistage reluctance coil launchers with residual energy recovery and utilization mode is proposed. By this method, the coil parameters of the original simulation model are optimized, and the simulation and experimental results before and after optimization are compared. The comparison results show that the optimization method proposed in this article integrates the relationship between projectile velocity and recovery energy, which can significantly improve the overall launch efficiency of the multistage system.","PeriodicalId":450,"journal":{"name":"IEEE Transactions on Plasma Science","volume":"51 7","pages":"1996-2003"},"PeriodicalIF":1.3000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Plasma Science","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/10167447/","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0
Abstract
Launch efficiency is an important indicator to judge the performance of electromagnetic launchers. The goal of the conventional parameter optimization method for multistage launch is to maximize projectile kinetic energy in each stage acceleration. For reluctance coil launchers with residual recovery and utilization mode, the effect of the launcher parameters on the recovery energy should be considered in addition to the kinetic energy of the projectile. In this article, the feasibility of the model and the correctness of the original model are first verified by a four-stage launching experiment. Then, the influence of the drive coil parameters on the projectile acceleration and energy recovery is analyzed through theoretical analysis. In addition, a drive coil parameter optimization method for multistage reluctance coil launchers with residual energy recovery and utilization mode is proposed. By this method, the coil parameters of the original simulation model are optimized, and the simulation and experimental results before and after optimization are compared. The comparison results show that the optimization method proposed in this article integrates the relationship between projectile velocity and recovery energy, which can significantly improve the overall launch efficiency of the multistage system.
期刊介绍:
The scope covers all aspects of the theory and application of plasma science. It includes the following areas: magnetohydrodynamics; thermionics and plasma diodes; basic plasma phenomena; gaseous electronics; microwave/plasma interaction; electron, ion, and plasma sources; space plasmas; intense electron and ion beams; laser-plasma interactions; plasma diagnostics; plasma chemistry and processing; solid-state plasmas; plasma heating; plasma for controlled fusion research; high energy density plasmas; industrial/commercial applications of plasma physics; plasma waves and instabilities; and high power microwave and submillimeter wave generation.