B. LaRiviere;P. Ramuhalli;F. K. Reed;P. C. Joshi;M. N. Ericson;T. Aytug;M. L. Crespillo;S. J. Zinkle;W. J. Weber;E. Zarkadoula
{"title":"Irradiation-Induced Degradation of Surface Acoustic Wave Devices Fabricated on Bulk AlN","authors":"B. LaRiviere;P. Ramuhalli;F. K. Reed;P. C. Joshi;M. N. Ericson;T. Aytug;M. L. Crespillo;S. J. Zinkle;W. J. Weber;E. Zarkadoula","doi":"10.1109/TDMR.2022.3212050","DOIUrl":null,"url":null,"abstract":"Here, recent work to evaluate the prospects for surface acoustic wave (SAW) devices fabricated on bulk aluminum nitride (AlN) for elevated temperature and radiation environments is reported and discussed. The design and fabrication of an array of SAW devices using commercial wafers is described, including the non-standard fabrication approach taken to overcome the stress-induced warpage of the 50 mm diameter AlN substrates. Radio frequency performance characterization of the SAW devices, with resonance frequencies ranging from 0.5 GHz to 1.5 GHz, is described. The linear temperature coefficient of frequency (TCF) near room temperature was measured and is compared to theoretical results from other investigators. The effects of 8 MeV Al ion irradiation at 300°C and 500°C to damage levels of 0.01, 0.1 and 1 displacements per atom (dpa), as a proxy for neutron irradiation, was investigated. The ion irradiation damage was observed to decrease the SAW resonant frequency, and this effect is characterized and discussed. Significant degradation in the conductivity of the Ti/Al electrodes of the SAW devices was also observed and characterized. These experimental results provide a basis for further investigation of the prospects for development of SAW sensor devices in bulk AlN material for application in elevated temperature and radiation environments.","PeriodicalId":448,"journal":{"name":"IEEE Transactions on Device and Materials Reliability","volume":"22 4","pages":"493-499"},"PeriodicalIF":2.5000,"publicationDate":"2022-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Device and Materials Reliability","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/9916110/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 2
Abstract
Here, recent work to evaluate the prospects for surface acoustic wave (SAW) devices fabricated on bulk aluminum nitride (AlN) for elevated temperature and radiation environments is reported and discussed. The design and fabrication of an array of SAW devices using commercial wafers is described, including the non-standard fabrication approach taken to overcome the stress-induced warpage of the 50 mm diameter AlN substrates. Radio frequency performance characterization of the SAW devices, with resonance frequencies ranging from 0.5 GHz to 1.5 GHz, is described. The linear temperature coefficient of frequency (TCF) near room temperature was measured and is compared to theoretical results from other investigators. The effects of 8 MeV Al ion irradiation at 300°C and 500°C to damage levels of 0.01, 0.1 and 1 displacements per atom (dpa), as a proxy for neutron irradiation, was investigated. The ion irradiation damage was observed to decrease the SAW resonant frequency, and this effect is characterized and discussed. Significant degradation in the conductivity of the Ti/Al electrodes of the SAW devices was also observed and characterized. These experimental results provide a basis for further investigation of the prospects for development of SAW sensor devices in bulk AlN material for application in elevated temperature and radiation environments.
期刊介绍:
The scope of the publication includes, but is not limited to Reliability of: Devices, Materials, Processes, Interfaces, Integrated Microsystems (including MEMS & Sensors), Transistors, Technology (CMOS, BiCMOS, etc.), Integrated Circuits (IC, SSI, MSI, LSI, ULSI, ELSI, etc.), Thin Film Transistor Applications. The measurement and understanding of the reliability of such entities at each phase, from the concept stage through research and development and into manufacturing scale-up, provides the overall database on the reliability of the devices, materials, processes, package and other necessities for the successful introduction of a product to market. This reliability database is the foundation for a quality product, which meets customer expectation. A product so developed has high reliability. High quality will be achieved because product weaknesses will have been found (root cause analysis) and designed out of the final product. This process of ever increasing reliability and quality will result in a superior product. In the end, reliability and quality are not one thing; but in a sense everything, which can be or has to be done to guarantee that the product successfully performs in the field under customer conditions. Our goal is to capture these advances. An additional objective is to focus cross fertilized communication in the state of the art of reliability of electronic materials and devices and provide fundamental understanding of basic phenomena that affect reliability. In addition, the publication is a forum for interdisciplinary studies on reliability. An overall goal is to provide leading edge/state of the art information, which is critically relevant to the creation of reliable products.