Andrey V. Kazakov;Efim M. Oks;Nikolay A. Panchenko
{"title":"On the Ion Flux From Beam Plasma to a Metal Target Irradiated by a Pulsed Electron Beam in the Forevacuum Pressure Range","authors":"Andrey V. Kazakov;Efim M. Oks;Nikolay A. Panchenko","doi":"10.1109/TPS.2023.3304058","DOIUrl":null,"url":null,"abstract":"We describe our investigations of the influence of electron beam parameters and working gas on the ion flux coming from the beam-produced plasma (beam plasma) to a target irradiated by a pulsed low-energy (up to 9 keV) electron beam in the forevacuum pressure range 4–15 Pa. The ion current from the beam-produced plasma to the target increases with increasing gas pressure and beam current, but decreases with increasing beam accelerating voltage. The use of gas with a greater ionization cross section leads to greater ion flux and correspondingly higher ion current to the irradiated target. The value of ion current to the target from the beam-plasma does not exceed 20% of the electron beam current. The observed dependencies of ion flux (current) to the target are due to changes in the beam-plasma density near the target. These results contribute to our understanding of the generation of beam-plasma by a pulsed electron beam and suggest the application of the ion flux from the beam-plasma to assist in electron-beam modification of dielectric materials in the forevacuum pressure region.","PeriodicalId":450,"journal":{"name":"IEEE Transactions on Plasma Science","volume":"51 8","pages":"2245-2251"},"PeriodicalIF":1.3000,"publicationDate":"2023-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Plasma Science","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/10225454/","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0
Abstract
We describe our investigations of the influence of electron beam parameters and working gas on the ion flux coming from the beam-produced plasma (beam plasma) to a target irradiated by a pulsed low-energy (up to 9 keV) electron beam in the forevacuum pressure range 4–15 Pa. The ion current from the beam-produced plasma to the target increases with increasing gas pressure and beam current, but decreases with increasing beam accelerating voltage. The use of gas with a greater ionization cross section leads to greater ion flux and correspondingly higher ion current to the irradiated target. The value of ion current to the target from the beam-plasma does not exceed 20% of the electron beam current. The observed dependencies of ion flux (current) to the target are due to changes in the beam-plasma density near the target. These results contribute to our understanding of the generation of beam-plasma by a pulsed electron beam and suggest the application of the ion flux from the beam-plasma to assist in electron-beam modification of dielectric materials in the forevacuum pressure region.
期刊介绍:
The scope covers all aspects of the theory and application of plasma science. It includes the following areas: magnetohydrodynamics; thermionics and plasma diodes; basic plasma phenomena; gaseous electronics; microwave/plasma interaction; electron, ion, and plasma sources; space plasmas; intense electron and ion beams; laser-plasma interactions; plasma diagnostics; plasma chemistry and processing; solid-state plasmas; plasma heating; plasma for controlled fusion research; high energy density plasmas; industrial/commercial applications of plasma physics; plasma waves and instabilities; and high power microwave and submillimeter wave generation.