Shaghayegh Ahmadi , Zahra Ghasempour , Mohammad Hasanzadeh
{"title":"A novel photonic chemosensor for rapidly detecting synthetic dyes in orange juice using colorimetric and spectrophotometric methods","authors":"Shaghayegh Ahmadi , Zahra Ghasempour , Mohammad Hasanzadeh","doi":"10.1016/j.foodchem.2023.136307","DOIUrl":null,"url":null,"abstract":"<div><p>Synthetic dyes must be monitored and regulated. We aimed to develop a novel photonic chemosensor for rapidly monitoring synthetic dyes based on colorimetric (chemical interactions with optical probes using microfluidic paper-based analytical devices) and UV–Vis spectrophotometric methods. Various types of gold and silver nanoparticles were surveyed to identify the targets. In the presence of silver nanoprisms, the naked eye could visualize the unique and distinctive color changes of Tartrazine (Tar) to green and Sunset Yellow (Sun) to brown; UV–Vis spectrophotometry validated the results. The developed chemosensor showed linear ranges of 0.07–0.3 mM and 0.05–0.2 mM for Tar and Sun, respectively. Sources of interference had minimal effects, confirming the appropriate selectivity of the developed chemosensor. Our novel chemosensor demonstrated excellent analytical performance for measuring Tar and Sun in several types of orange juice as real samples, confirming its incredible potential for use in the food industry.</p></div>","PeriodicalId":318,"journal":{"name":"Food Chemistry","volume":"423 ","pages":"Article 136307"},"PeriodicalIF":8.5000,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0308814623009251","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 1
Abstract
Synthetic dyes must be monitored and regulated. We aimed to develop a novel photonic chemosensor for rapidly monitoring synthetic dyes based on colorimetric (chemical interactions with optical probes using microfluidic paper-based analytical devices) and UV–Vis spectrophotometric methods. Various types of gold and silver nanoparticles were surveyed to identify the targets. In the presence of silver nanoprisms, the naked eye could visualize the unique and distinctive color changes of Tartrazine (Tar) to green and Sunset Yellow (Sun) to brown; UV–Vis spectrophotometry validated the results. The developed chemosensor showed linear ranges of 0.07–0.3 mM and 0.05–0.2 mM for Tar and Sun, respectively. Sources of interference had minimal effects, confirming the appropriate selectivity of the developed chemosensor. Our novel chemosensor demonstrated excellent analytical performance for measuring Tar and Sun in several types of orange juice as real samples, confirming its incredible potential for use in the food industry.
期刊介绍:
Food Chemistry publishes original research papers dealing with the advancement of the chemistry and biochemistry of foods or the analytical methods/ approach used. All papers should focus on the novelty of the research carried out.