{"title":"Acid Neutralization Capacity of a Tricalcium Silicate-Containing Calcium Phosphate Cement as an Endodontic Material.","authors":"A Maria Cherng, Shozo Takagi, Laurence C Chow","doi":"10.6028/jres.115.033","DOIUrl":null,"url":null,"abstract":"<p><p>A calcium phosphate cement (CPC) was shown to have the necessary attributes for endodontic materials except adequate basicity needed for antimicrobial properties. To enhance its basicity, tricalcium silicate (Ca3SiO5), a highly alkaline compound, was added to CPC at a mass fraction of 0.25, 0.5 or 0.75. The basicity, acid neutralization and physical properties of the CPC-Ca3SiO5 composites were investigated. Mineral trioxide aggregate (MTA) was used as the control. The acid neutralizing capacity of the CPC-Ca3SiO5 composites and MTA were measured by titrating the suspensions of ground set samples with a 0.2 mol / L HCl at predetermined pH levels, i.e., 11, 9.0, and 7.4. The setting time of CPC-Ca3SiO5 composites determined by the Gilmore needle method was 40 ± 10 min. Acid neutralizing capacity of CPC depended (p < 0.05) on Ca3SiO5 content. CPC containing 75 % Ca3SiO5 could neutralize slightly less acid than MTA (p < 0.05), but it had a shorter setting time than that of MTA (> 4 h) and excellent handling properties.</p>","PeriodicalId":17039,"journal":{"name":"Journal of Research of the National Institute of Standards and Technology","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4548869/pdf/","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Research of the National Institute of Standards and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.6028/jres.115.033","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2010/11/1 0:00:00","PubModel":"Print","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
A calcium phosphate cement (CPC) was shown to have the necessary attributes for endodontic materials except adequate basicity needed for antimicrobial properties. To enhance its basicity, tricalcium silicate (Ca3SiO5), a highly alkaline compound, was added to CPC at a mass fraction of 0.25, 0.5 or 0.75. The basicity, acid neutralization and physical properties of the CPC-Ca3SiO5 composites were investigated. Mineral trioxide aggregate (MTA) was used as the control. The acid neutralizing capacity of the CPC-Ca3SiO5 composites and MTA were measured by titrating the suspensions of ground set samples with a 0.2 mol / L HCl at predetermined pH levels, i.e., 11, 9.0, and 7.4. The setting time of CPC-Ca3SiO5 composites determined by the Gilmore needle method was 40 ± 10 min. Acid neutralizing capacity of CPC depended (p < 0.05) on Ca3SiO5 content. CPC containing 75 % Ca3SiO5 could neutralize slightly less acid than MTA (p < 0.05), but it had a shorter setting time than that of MTA (> 4 h) and excellent handling properties.
期刊介绍:
The Journal of Research of the National Institute of Standards and Technology is the flagship publication of the National Institute of Standards and Technology. It has been published under various titles and forms since 1904, with its roots as Scientific Papers issued as the Bulletin of the Bureau of Standards.
In 1928, the Scientific Papers were combined with Technologic Papers, which reported results of investigations of material and methods of testing. This new publication was titled the Bureau of Standards Journal of Research.
The Journal of Research of NIST reports NIST research and development in metrology and related fields of physical science, engineering, applied mathematics, statistics, biotechnology, information technology.