Timothy A Slocum, Sarah E Pinkelman, P Raymond Joslyn, Beverly Nichols
{"title":"Threats to Internal Validity in Multiple-Baseline Design Variations.","authors":"Timothy A Slocum, Sarah E Pinkelman, P Raymond Joslyn, Beverly Nichols","doi":"10.1007/s40614-022-00326-1","DOIUrl":null,"url":null,"abstract":"<p><p>Multiple baseline designs-both concurrent and nonconcurrent-are the predominant experimental design in modern applied behavior analytic research and are increasingly employed in other disciplines. In the past, there was significant controversy regarding the relative rigor of concurrent and nonconcurrent multiple baseline designs. The consensus in recent textbooks and methodological papers is that nonconcurrent designs are less rigorous than concurrent designs because of their presumed limited ability to address the threat of coincidental events (i.e., history). This skepticism of nonconcurrent designs stems from an emphasis on the importance of across-tier comparisons and relatively low importance placed on replicated within-tier comparisons for addressing threats to internal validity and establishing experimental control. In this article, we argue that the primary reliance on across-tier comparisons and the resulting deprecation of nonconcurrent designs are not well-justified. In this article, we first define multiple baseline designs, describe common threats to internal validity, and delineate the two bases for controlling these threats. Second, we briefly summarize historical methodological writing and current textbook treatment of these designs. Third, we explore how concurrent and nonconcurrent multiple baselines address each of the main threats to internal validity. Finally, we make recommendations for more rigorous use, reporting, and evaluation of multiple baseline designs.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":"619-638"},"PeriodicalIF":4.6000,"publicationDate":"2022-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9458807/pdf/","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1007/s40614-022-00326-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/9/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 25
Abstract
Multiple baseline designs-both concurrent and nonconcurrent-are the predominant experimental design in modern applied behavior analytic research and are increasingly employed in other disciplines. In the past, there was significant controversy regarding the relative rigor of concurrent and nonconcurrent multiple baseline designs. The consensus in recent textbooks and methodological papers is that nonconcurrent designs are less rigorous than concurrent designs because of their presumed limited ability to address the threat of coincidental events (i.e., history). This skepticism of nonconcurrent designs stems from an emphasis on the importance of across-tier comparisons and relatively low importance placed on replicated within-tier comparisons for addressing threats to internal validity and establishing experimental control. In this article, we argue that the primary reliance on across-tier comparisons and the resulting deprecation of nonconcurrent designs are not well-justified. In this article, we first define multiple baseline designs, describe common threats to internal validity, and delineate the two bases for controlling these threats. Second, we briefly summarize historical methodological writing and current textbook treatment of these designs. Third, we explore how concurrent and nonconcurrent multiple baselines address each of the main threats to internal validity. Finally, we make recommendations for more rigorous use, reporting, and evaluation of multiple baseline designs.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.