{"title":"Programmed cell death in plants: lessons from bacteria?","authors":"Junhui Wang, Kenneth W Bayles","doi":"10.1016/j.tplants.2012.09.004","DOIUrl":null,"url":null,"abstract":"<p><p>Programmed cell death (PCD) has well-established roles in the development and physiology of animals, plants, and fungi. Although aspects of PCD control appear evolutionarily conserved between these organisms, the extent of conservation remains controversial. Recently, a putative bacterial PCD protein homolog in plants was found to play a significant role in cell death control, indicating a conservation of function between these highly divergent organisms. Interestingly, these bacterial proteins are thought to be evolutionarily linked to the Bcl-2 family of proteins. In this opinion article, we propose a new unifying model to describe the relationship between bacterial and plant PCD systems and propose that the underlying control of PCD is conserved across at least three Kingdoms of life.</p>","PeriodicalId":17,"journal":{"name":"ACS Infectious Diseases","volume":null,"pages":null},"PeriodicalIF":4.0000,"publicationDate":"2013-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.tplants.2012.09.004","citationCount":"49","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Infectious Diseases","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.tplants.2012.09.004","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2012/10/16 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 49
Abstract
Programmed cell death (PCD) has well-established roles in the development and physiology of animals, plants, and fungi. Although aspects of PCD control appear evolutionarily conserved between these organisms, the extent of conservation remains controversial. Recently, a putative bacterial PCD protein homolog in plants was found to play a significant role in cell death control, indicating a conservation of function between these highly divergent organisms. Interestingly, these bacterial proteins are thought to be evolutionarily linked to the Bcl-2 family of proteins. In this opinion article, we propose a new unifying model to describe the relationship between bacterial and plant PCD systems and propose that the underlying control of PCD is conserved across at least three Kingdoms of life.
期刊介绍:
ACS Infectious Diseases will be the first journal to highlight chemistry and its role in this multidisciplinary and collaborative research area. The journal will cover a diverse array of topics including, but not limited to:
* Discovery and development of new antimicrobial agents — identified through target- or phenotypic-based approaches as well as compounds that induce synergy with antimicrobials.
* Characterization and validation of drug target or pathways — use of single target and genome-wide knockdown and knockouts, biochemical studies, structural biology, new technologies to facilitate characterization and prioritization of potential drug targets.
* Mechanism of drug resistance — fundamental research that advances our understanding of resistance; strategies to prevent resistance.
* Mechanisms of action — use of genetic, metabolomic, and activity- and affinity-based protein profiling to elucidate the mechanism of action of clinical and experimental antimicrobial agents.
* Host-pathogen interactions — tools for studying host-pathogen interactions, cellular biochemistry of hosts and pathogens, and molecular interactions of pathogens with host microbiota.
* Small molecule vaccine adjuvants for infectious disease.
* Viral and bacterial biochemistry and molecular biology.