Ryota Shinohara , George K. Aghajanian , Chadi G. Abdallah
{"title":"Neurobiology of the Rapid-Acting Antidepressant Effects of Ketamine: Impact and Opportunities","authors":"Ryota Shinohara , George K. Aghajanian , Chadi G. Abdallah","doi":"10.1016/j.biopsych.2020.12.006","DOIUrl":null,"url":null,"abstract":"<div><p><span><span><span>The discovery of the rapid-acting antidepressant effects<span> of ketamine has 1) led to a paradigm shift in our perception of what is possible in treating severe depression; 2) spurred a wave of basic, translation, and </span></span>clinical research<span>; and 3) provided an unprecedented investigational tool to conduct longitudinal mechanistic studies that may capture behavioral changes as complex as clinical remission and relapse within hours and days of treatment. Unfortunately, these advances did not yet translate into clinical biomarkers or novel treatments, beyond ketamine. In contrast to slow-acting antidepressants, in which targeting monoaminergic receptors identified several efficacious </span></span>drugs with comparable mechanisms, the focus on the receptor targets of ketamine has failed in several </span>clinical trials<span> over the past decade. Thus, it is becoming increasingly crucial that we concentrate our effort on the downstream molecular mechanisms of ketamine and their effects on the brain circuitry and networks. Honoring the legacy of our mentor, friend, and colleague Ron Duman, we provide a historical note on the discovery of ketamine and its putative mechanisms. We then detail the molecular and circuits effect of ketamine based on preclinical findings, followed by a summary of the impact of this work on our understanding of chronic stress pathology across psychiatric disorders, with particular emphasis on the role of synaptic connectivity and its brain network effects in the pathology and treatment of clinical depression.</span></p></div>","PeriodicalId":8918,"journal":{"name":"Biological Psychiatry","volume":"90 2","pages":"Pages 85-95"},"PeriodicalIF":9.6000,"publicationDate":"2021-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0006322320321144","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 21
Abstract
The discovery of the rapid-acting antidepressant effects of ketamine has 1) led to a paradigm shift in our perception of what is possible in treating severe depression; 2) spurred a wave of basic, translation, and clinical research; and 3) provided an unprecedented investigational tool to conduct longitudinal mechanistic studies that may capture behavioral changes as complex as clinical remission and relapse within hours and days of treatment. Unfortunately, these advances did not yet translate into clinical biomarkers or novel treatments, beyond ketamine. In contrast to slow-acting antidepressants, in which targeting monoaminergic receptors identified several efficacious drugs with comparable mechanisms, the focus on the receptor targets of ketamine has failed in several clinical trials over the past decade. Thus, it is becoming increasingly crucial that we concentrate our effort on the downstream molecular mechanisms of ketamine and their effects on the brain circuitry and networks. Honoring the legacy of our mentor, friend, and colleague Ron Duman, we provide a historical note on the discovery of ketamine and its putative mechanisms. We then detail the molecular and circuits effect of ketamine based on preclinical findings, followed by a summary of the impact of this work on our understanding of chronic stress pathology across psychiatric disorders, with particular emphasis on the role of synaptic connectivity and its brain network effects in the pathology and treatment of clinical depression.
期刊介绍:
Biological Psychiatry is an official journal of the Society of Biological Psychiatry and was established in 1969. It is the first journal in the Biological Psychiatry family, which also includes Biological Psychiatry: Cognitive Neuroscience and Neuroimaging and Biological Psychiatry: Global Open Science. The Society's main goal is to promote excellence in scientific research and education in the fields related to the nature, causes, mechanisms, and treatments of disorders pertaining to thought, emotion, and behavior. To fulfill this mission, Biological Psychiatry publishes peer-reviewed, rapid-publication articles that present new findings from original basic, translational, and clinical mechanistic research, ultimately advancing our understanding of psychiatric disorders and their treatment. The journal also encourages the submission of reviews and commentaries on current research and topics of interest.