Probiotic-fermented rice buckwheat alleviates high-fat diet-induced hyperlipidemia in mice by suppressing lipid accumulation and modulating gut microbiota
Jing Yan , Qiuyan Xue , Wenyi Chen , Kun Wang , Dong Peng , Jinjin Jiang , Pan Li , Bing Du
{"title":"Probiotic-fermented rice buckwheat alleviates high-fat diet-induced hyperlipidemia in mice by suppressing lipid accumulation and modulating gut microbiota","authors":"Jing Yan , Qiuyan Xue , Wenyi Chen , Kun Wang , Dong Peng , Jinjin Jiang , Pan Li , Bing Du","doi":"10.1016/j.foodres.2022.111125","DOIUrl":null,"url":null,"abstract":"<div><p>Hyperlipidemia is associated with lipid metabolic disorders, chronic inflammation, and intestinal dysbiosis. Previous studies have shown that the metabolic improvement of high-fat diet (HFD)-induced mice by buckwheat is correlated with gut microbiota; however, the anti-hyperlipidemia effects and potential mechanism of probiotics-fermented rice buckwheat (FRB) are not well understood. Here, we aimed to investigate the lipid-lowering and gut microbiota regulation of FRB in HFD-induced hyperlipidemic mice. We observed that probiotic fermentation markedly increased the contents of γ-aminobutyric acid, rutin, total polyphenols, and total flavonoids in rice buckwheat. FRB supplementation over eight weeks significantly reduced body weight gain and visceral obesity, as well as alleviating dyslipidemia in HFD-fed mice. Moreover, FRB treatment effectively ameliorated oxidative stress and chronic inflammation. We further demonstrated that FRB intervention significantly inhibited hepatic cholesterol synthesis and lipogenesis, and promoted lipolysis. More important, FRB treatment reversed HFD-induced gut dysbiosis by decreasing the ratio of Firmicutes to Bacteroidetes and increasing the abundance of SCFA-producing bacteria such as <em>Bacteroides, Lactobacillus,</em> and <em>Blautia,</em> along with increasing the total SCFAs contents. Overall, these results show that FRB is a beneficial nutraceutical for hyperlipidemia amelioration.</p></div>","PeriodicalId":323,"journal":{"name":"Food Research International","volume":null,"pages":null},"PeriodicalIF":7.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Research International","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S096399692200182X","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 21
Abstract
Hyperlipidemia is associated with lipid metabolic disorders, chronic inflammation, and intestinal dysbiosis. Previous studies have shown that the metabolic improvement of high-fat diet (HFD)-induced mice by buckwheat is correlated with gut microbiota; however, the anti-hyperlipidemia effects and potential mechanism of probiotics-fermented rice buckwheat (FRB) are not well understood. Here, we aimed to investigate the lipid-lowering and gut microbiota regulation of FRB in HFD-induced hyperlipidemic mice. We observed that probiotic fermentation markedly increased the contents of γ-aminobutyric acid, rutin, total polyphenols, and total flavonoids in rice buckwheat. FRB supplementation over eight weeks significantly reduced body weight gain and visceral obesity, as well as alleviating dyslipidemia in HFD-fed mice. Moreover, FRB treatment effectively ameliorated oxidative stress and chronic inflammation. We further demonstrated that FRB intervention significantly inhibited hepatic cholesterol synthesis and lipogenesis, and promoted lipolysis. More important, FRB treatment reversed HFD-induced gut dysbiosis by decreasing the ratio of Firmicutes to Bacteroidetes and increasing the abundance of SCFA-producing bacteria such as Bacteroides, Lactobacillus, and Blautia, along with increasing the total SCFAs contents. Overall, these results show that FRB is a beneficial nutraceutical for hyperlipidemia amelioration.
期刊介绍:
Food Research International serves as a rapid dissemination platform for significant and impactful research in food science, technology, engineering, and nutrition. The journal focuses on publishing novel, high-quality, and high-impact review papers, original research papers, and letters to the editors across various disciplines in the science and technology of food. Additionally, it follows a policy of publishing special issues on topical and emergent subjects in food research or related areas. Selected, peer-reviewed papers from scientific meetings, workshops, and conferences on the science, technology, and engineering of foods are also featured in special issues.