Zhiwei Zhou , Dan Wang , Xinyi Xu , Jin Dai , Guangjie Lao , Senlin Zhang , Xiaofang Xu , András Dinnyés , Youling Xiong , Qun Sun
{"title":"Myofibrillar protein-chlorogenic acid complexes ameliorate glucose metabolism via modulating gut microbiota in a type 2 diabetic rat model","authors":"Zhiwei Zhou , Dan Wang , Xinyi Xu , Jin Dai , Guangjie Lao , Senlin Zhang , Xiaofang Xu , András Dinnyés , Youling Xiong , Qun Sun","doi":"10.1016/j.foodchem.2022.135195","DOIUrl":null,"url":null,"abstract":"<div><p>Growing evidence suggests that polyphenols could mitigate type 2 diabetes mellitus (T2DM). The glucose-regulatory effects of protein-bound polyphenols, however, have been rarely studied. In this study, macrogenomic and metabolomic analyses were applied to investigate the modulation of myofibrillar protein-chlorogenic acid (MP-CGA) complexes on T2DM rats from the gut microbiota perspective. Results showed that MP-CGA improved hyperglycemia and hyperlipidemia, decreased intestinal inflammation, and reduced intestinal barrier injury. MP-CGA reconstructed gut microbiota in T2DM rats, elevating the abundance of probiotics <em>Bacteroides</em>, <em>Akkermansia</em>, and <em>Parabacteroides</em> while suppressing opportunistic pathogens <em>Enterococcus</em> and <em>Staphylococcus</em>. MP-CGA significantly elevated the concentrations of intestinal metabolites like butyric acid that positively regulate T2DM and reduced the secondary bile acids contents. Therefore, MP-CGA modulated the gut microbiota and related metabolites to maintain stable blood glucose in T2DM rats, providing new insights into the application of protein-polyphenol complexes in foods.</p></div>","PeriodicalId":318,"journal":{"name":"Food Chemistry","volume":null,"pages":null},"PeriodicalIF":8.5000,"publicationDate":"2023-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0308814622031570","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 5
Abstract
Growing evidence suggests that polyphenols could mitigate type 2 diabetes mellitus (T2DM). The glucose-regulatory effects of protein-bound polyphenols, however, have been rarely studied. In this study, macrogenomic and metabolomic analyses were applied to investigate the modulation of myofibrillar protein-chlorogenic acid (MP-CGA) complexes on T2DM rats from the gut microbiota perspective. Results showed that MP-CGA improved hyperglycemia and hyperlipidemia, decreased intestinal inflammation, and reduced intestinal barrier injury. MP-CGA reconstructed gut microbiota in T2DM rats, elevating the abundance of probiotics Bacteroides, Akkermansia, and Parabacteroides while suppressing opportunistic pathogens Enterococcus and Staphylococcus. MP-CGA significantly elevated the concentrations of intestinal metabolites like butyric acid that positively regulate T2DM and reduced the secondary bile acids contents. Therefore, MP-CGA modulated the gut microbiota and related metabolites to maintain stable blood glucose in T2DM rats, providing new insights into the application of protein-polyphenol complexes in foods.
期刊介绍:
Food Chemistry publishes original research papers dealing with the advancement of the chemistry and biochemistry of foods or the analytical methods/ approach used. All papers should focus on the novelty of the research carried out.