{"title":"Deciphering the Role of <i>pafBC</i> in Mycobacteriophage Resistance and Biofilm Formation.","authors":"Hafiza Amina Rafique, Huang Yu, Abulimiti Abudukadier, Ismail Mohamed Suleiman, Tianyu Zhang, Thi Thu Thuy Le, Haiqi Chen, Jianping Xie","doi":"10.1021/acsinfecdis.5c00627","DOIUrl":null,"url":null,"abstract":"<p><p>Tuberculosis (TB) remains the world's deadliest bacterial infection, with 8.2 million newly notified cases and an estimated 1.25 million deaths in 2023. Alarmingly, ∼19% of multidrug- or rifampicin-resistant (MDR/RR) strains already meet the World Health Organization (WHO) definition of pre-XDR-TB because they are resistant to at least one fluoroquinolone (FQ). Although <b>gyrA/gyrB</b> target-site mutations dominate clinical FQ resistance, <i>Mycobacteria</i> also rely on transcriptional networks that help them withstand the oxidative and DNA strand-breaking stress caused by these drugs. Central to this response is the heterodimeric transcription factor <i>pafBC</i><b>,</b> whose WYL domain binds to single-stranded DNA and redirects RNA polymerase to a dedicated promoter set, thereby orchestrating a LexA-independent DNA-damage response (DDR). Up-regulation of <b><i>pafBC</i></b> has been linked to enhanced intracellular survival of <i>M. tuberculosis</i> and nontuberculous mycobacteria after FQ exposure, yet the downstream phenotypes and their connection to drug or phage resistance have remained unclear. Here, we demonstrate that deletion of <b><i>pafBC</i></b> in <i>Mycobacterium smegmatis</i> profoundly remodels the cell envelope, as evidenced by altered colony rugosity, reduced sliding motility, enhanced aggregation, and a three- to 5-fold decline in quantitative biofilm biomass. Untargeted lipid profiling revealed the selective depletion of long-chain trehalose polyphosphates and other apolar glycolipids that normally decorate the outer membrane─lipid classes that have recently been shown in other studies to serve as essential receptors for therapeutic mycobacteriophages such as BPs and Muddy. Consistent with this lipid deficit, the <i>pafBC</i> mutant exhibited markedly reduced phage adsorption and plaque formation; ectopic expression of <b><i>RecA</i></b> restored adsorption efficiency, implicating DDR envelope crosstalk in antiphage defense. Complementation with wild-type <b><i>pafBC</i></b> rescued lipid composition, biofilm mass, and phage resistance, whereas a WYL-domain mutant that cannot bind single-stranded DNA failed to do so, underscoring the necessity of canonical <i>pafBC</i> activation for envelope homeostasis. Immunoprofiling in THP-1 macrophages further showed that <i>pafBC</i><b>-proficient</b> bacilli induce significantly higher secretion of <i>IL-1</i>β, <i>TNF-</i>α, and <i>IL-6</i> compared to their isogenic mutant. This effect correlated with the presence of intact surface glycolipids, molecules known to interact with scavenger and Toll-like receptors on phagocytes and to enhance opsonizing antibody deposition at the host-pathogen interface. Overall, our findings connect the molecular mechanisms of the <i>pafBC</i> DDR with observable phenotypes such as fluoroquinolone tolerance, biofilm structure, phage resistance, and host immune recognition, by highlighting cell-envelope remodeling as the central factor.</p>","PeriodicalId":17,"journal":{"name":"ACS Infectious Diseases","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Infectious Diseases","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acsinfecdis.5c00627","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Tuberculosis (TB) remains the world's deadliest bacterial infection, with 8.2 million newly notified cases and an estimated 1.25 million deaths in 2023. Alarmingly, ∼19% of multidrug- or rifampicin-resistant (MDR/RR) strains already meet the World Health Organization (WHO) definition of pre-XDR-TB because they are resistant to at least one fluoroquinolone (FQ). Although gyrA/gyrB target-site mutations dominate clinical FQ resistance, Mycobacteria also rely on transcriptional networks that help them withstand the oxidative and DNA strand-breaking stress caused by these drugs. Central to this response is the heterodimeric transcription factor pafBC, whose WYL domain binds to single-stranded DNA and redirects RNA polymerase to a dedicated promoter set, thereby orchestrating a LexA-independent DNA-damage response (DDR). Up-regulation of pafBC has been linked to enhanced intracellular survival of M. tuberculosis and nontuberculous mycobacteria after FQ exposure, yet the downstream phenotypes and their connection to drug or phage resistance have remained unclear. Here, we demonstrate that deletion of pafBC in Mycobacterium smegmatis profoundly remodels the cell envelope, as evidenced by altered colony rugosity, reduced sliding motility, enhanced aggregation, and a three- to 5-fold decline in quantitative biofilm biomass. Untargeted lipid profiling revealed the selective depletion of long-chain trehalose polyphosphates and other apolar glycolipids that normally decorate the outer membrane─lipid classes that have recently been shown in other studies to serve as essential receptors for therapeutic mycobacteriophages such as BPs and Muddy. Consistent with this lipid deficit, the pafBC mutant exhibited markedly reduced phage adsorption and plaque formation; ectopic expression of RecA restored adsorption efficiency, implicating DDR envelope crosstalk in antiphage defense. Complementation with wild-type pafBC rescued lipid composition, biofilm mass, and phage resistance, whereas a WYL-domain mutant that cannot bind single-stranded DNA failed to do so, underscoring the necessity of canonical pafBC activation for envelope homeostasis. Immunoprofiling in THP-1 macrophages further showed that pafBC-proficient bacilli induce significantly higher secretion of IL-1β, TNF-α, and IL-6 compared to their isogenic mutant. This effect correlated with the presence of intact surface glycolipids, molecules known to interact with scavenger and Toll-like receptors on phagocytes and to enhance opsonizing antibody deposition at the host-pathogen interface. Overall, our findings connect the molecular mechanisms of the pafBC DDR with observable phenotypes such as fluoroquinolone tolerance, biofilm structure, phage resistance, and host immune recognition, by highlighting cell-envelope remodeling as the central factor.
期刊介绍:
ACS Infectious Diseases will be the first journal to highlight chemistry and its role in this multidisciplinary and collaborative research area. The journal will cover a diverse array of topics including, but not limited to:
* Discovery and development of new antimicrobial agents — identified through target- or phenotypic-based approaches as well as compounds that induce synergy with antimicrobials.
* Characterization and validation of drug target or pathways — use of single target and genome-wide knockdown and knockouts, biochemical studies, structural biology, new technologies to facilitate characterization and prioritization of potential drug targets.
* Mechanism of drug resistance — fundamental research that advances our understanding of resistance; strategies to prevent resistance.
* Mechanisms of action — use of genetic, metabolomic, and activity- and affinity-based protein profiling to elucidate the mechanism of action of clinical and experimental antimicrobial agents.
* Host-pathogen interactions — tools for studying host-pathogen interactions, cellular biochemistry of hosts and pathogens, and molecular interactions of pathogens with host microbiota.
* Small molecule vaccine adjuvants for infectious disease.
* Viral and bacterial biochemistry and molecular biology.