Investigating the effect of mechanical adaptation on mid-air ultrasound vibrotactile stimuli.

IF 2.8 3区 计算机科学 Q2 COMPUTER SCIENCE, CYBERNETICS
Antonio Cataldo, Tianhui Huang, William Frier, Patrick Haggard
{"title":"Investigating the effect of mechanical adaptation on mid-air ultrasound vibrotactile stimuli.","authors":"Antonio Cataldo, Tianhui Huang, William Frier, Patrick Haggard","doi":"10.1109/TOH.2025.3623837","DOIUrl":null,"url":null,"abstract":"<p><p>Gesture control systems based on mid-air haptics are increasingly used in infotainment systems in cars, where they can reduce drivers' distractions and improve safety. However, studies on vibrotactile adaptation show that exposure to mechanical vibration impairs the perception of subsequent stimuli of the same frequency. Given that moving vehicles generate different types of mechanical noise, it is crucial to investigate whether mid-air ultrasound stimuli are also affected by mechanical adaptation. Here, we directly addressed this question by testing participants' perception of ultrasound stimuli both before and after exposure to different mechanical vibrations. Across two experiments, we systematically manipulated the frequency (Experiment 1) and amplitude (Experiment 2) of the adapting mechanical stimulus and measured participants' detection threshold for different ultrasound test stimuli. We found that low-frequency mechanical vibration significantly impaired perception of low-frequency ultrasound stimuli. In contrast, high-frequency mechanical vibration equally impaired perception of both low- and high-frequency ultrasound stimuli. This effect was mediated by the amplitude of the adapting stimulus, with stronger mechanical vibrations producing a larger increase in participants' detection threshold. These findings show that mid-air ultrasound stimuli are significantly affected by specific sources of mechanical noise, with important implications for their safe use in the automotive industry.</p>","PeriodicalId":13215,"journal":{"name":"IEEE Transactions on Haptics","volume":"PP ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Haptics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TOH.2025.3623837","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
引用次数: 0

Abstract

Gesture control systems based on mid-air haptics are increasingly used in infotainment systems in cars, where they can reduce drivers' distractions and improve safety. However, studies on vibrotactile adaptation show that exposure to mechanical vibration impairs the perception of subsequent stimuli of the same frequency. Given that moving vehicles generate different types of mechanical noise, it is crucial to investigate whether mid-air ultrasound stimuli are also affected by mechanical adaptation. Here, we directly addressed this question by testing participants' perception of ultrasound stimuli both before and after exposure to different mechanical vibrations. Across two experiments, we systematically manipulated the frequency (Experiment 1) and amplitude (Experiment 2) of the adapting mechanical stimulus and measured participants' detection threshold for different ultrasound test stimuli. We found that low-frequency mechanical vibration significantly impaired perception of low-frequency ultrasound stimuli. In contrast, high-frequency mechanical vibration equally impaired perception of both low- and high-frequency ultrasound stimuli. This effect was mediated by the amplitude of the adapting stimulus, with stronger mechanical vibrations producing a larger increase in participants' detection threshold. These findings show that mid-air ultrasound stimuli are significantly affected by specific sources of mechanical noise, with important implications for their safe use in the automotive industry.

研究机械适应对空中超声振动触觉刺激的影响。
基于空中触觉的手势控制系统越来越多地用于汽车信息娱乐系统,它们可以减少驾驶员的分心并提高安全性。然而,对振动触觉适应的研究表明,暴露于机械振动会损害对相同频率的后续刺激的感知。考虑到移动车辆产生不同类型的机械噪声,研究空中超声刺激是否也受到机械适应的影响是至关重要的。在这里,我们通过测试参与者在暴露于不同机械振动之前和之后对超声刺激的感知来直接解决这个问题。在两个实验中,我们系统地控制了自适应机械刺激的频率(实验1)和幅度(实验2),并测量了参与者对不同超声测试刺激的检测阈值。我们发现低频机械振动显著损害低频超声刺激的感知。相反,高频机械振动同样损害了对低频和高频超声刺激的感知。这种效应是由适应性刺激的振幅介导的,更强的机械振动会产生更大的检测阈值的增加。这些研究结果表明,空中超声刺激受到特定机械噪声来源的显著影响,这对其在汽车工业中的安全使用具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Haptics
IEEE Transactions on Haptics COMPUTER SCIENCE, CYBERNETICS-
CiteScore
5.90
自引率
13.80%
发文量
109
审稿时长
>12 weeks
期刊介绍: IEEE Transactions on Haptics (ToH) is a scholarly archival journal that addresses the science, technology, and applications associated with information acquisition and object manipulation through touch. Haptic interactions relevant to this journal include all aspects of manual exploration and manipulation of objects by humans, machines and interactions between the two, performed in real, virtual, teleoperated or networked environments. Research areas of relevance to this publication include, but are not limited to, the following topics: Human haptic and multi-sensory perception and action, Aspects of motor control that explicitly pertain to human haptics, Haptic interactions via passive or active tools and machines, Devices that sense, enable, or create haptic interactions locally or at a distance, Haptic rendering and its association with graphic and auditory rendering in virtual reality, Algorithms, controls, and dynamics of haptic devices, users, and interactions between the two, Human-machine performance and safety with haptic feedback, Haptics in the context of human-computer interactions, Systems and networks using haptic devices and interactions, including multi-modal feedback, Application of the above, for example in areas such as education, rehabilitation, medicine, computer-aided design, skills training, computer games, driver controls, simulation, and visualization.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信