Antonio Cataldo, Tianhui Huang, William Frier, Patrick Haggard
{"title":"Investigating the effect of mechanical adaptation on mid-air ultrasound vibrotactile stimuli.","authors":"Antonio Cataldo, Tianhui Huang, William Frier, Patrick Haggard","doi":"10.1109/TOH.2025.3623837","DOIUrl":null,"url":null,"abstract":"<p><p>Gesture control systems based on mid-air haptics are increasingly used in infotainment systems in cars, where they can reduce drivers' distractions and improve safety. However, studies on vibrotactile adaptation show that exposure to mechanical vibration impairs the perception of subsequent stimuli of the same frequency. Given that moving vehicles generate different types of mechanical noise, it is crucial to investigate whether mid-air ultrasound stimuli are also affected by mechanical adaptation. Here, we directly addressed this question by testing participants' perception of ultrasound stimuli both before and after exposure to different mechanical vibrations. Across two experiments, we systematically manipulated the frequency (Experiment 1) and amplitude (Experiment 2) of the adapting mechanical stimulus and measured participants' detection threshold for different ultrasound test stimuli. We found that low-frequency mechanical vibration significantly impaired perception of low-frequency ultrasound stimuli. In contrast, high-frequency mechanical vibration equally impaired perception of both low- and high-frequency ultrasound stimuli. This effect was mediated by the amplitude of the adapting stimulus, with stronger mechanical vibrations producing a larger increase in participants' detection threshold. These findings show that mid-air ultrasound stimuli are significantly affected by specific sources of mechanical noise, with important implications for their safe use in the automotive industry.</p>","PeriodicalId":13215,"journal":{"name":"IEEE Transactions on Haptics","volume":"PP ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Haptics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TOH.2025.3623837","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
引用次数: 0
Abstract
Gesture control systems based on mid-air haptics are increasingly used in infotainment systems in cars, where they can reduce drivers' distractions and improve safety. However, studies on vibrotactile adaptation show that exposure to mechanical vibration impairs the perception of subsequent stimuli of the same frequency. Given that moving vehicles generate different types of mechanical noise, it is crucial to investigate whether mid-air ultrasound stimuli are also affected by mechanical adaptation. Here, we directly addressed this question by testing participants' perception of ultrasound stimuli both before and after exposure to different mechanical vibrations. Across two experiments, we systematically manipulated the frequency (Experiment 1) and amplitude (Experiment 2) of the adapting mechanical stimulus and measured participants' detection threshold for different ultrasound test stimuli. We found that low-frequency mechanical vibration significantly impaired perception of low-frequency ultrasound stimuli. In contrast, high-frequency mechanical vibration equally impaired perception of both low- and high-frequency ultrasound stimuli. This effect was mediated by the amplitude of the adapting stimulus, with stronger mechanical vibrations producing a larger increase in participants' detection threshold. These findings show that mid-air ultrasound stimuli are significantly affected by specific sources of mechanical noise, with important implications for their safe use in the automotive industry.
期刊介绍:
IEEE Transactions on Haptics (ToH) is a scholarly archival journal that addresses the science, technology, and applications associated with information acquisition and object manipulation through touch. Haptic interactions relevant to this journal include all aspects of manual exploration and manipulation of objects by humans, machines and interactions between the two, performed in real, virtual, teleoperated or networked environments. Research areas of relevance to this publication include, but are not limited to, the following topics: Human haptic and multi-sensory perception and action, Aspects of motor control that explicitly pertain to human haptics, Haptic interactions via passive or active tools and machines, Devices that sense, enable, or create haptic interactions locally or at a distance, Haptic rendering and its association with graphic and auditory rendering in virtual reality, Algorithms, controls, and dynamics of haptic devices, users, and interactions between the two, Human-machine performance and safety with haptic feedback, Haptics in the context of human-computer interactions, Systems and networks using haptic devices and interactions, including multi-modal feedback, Application of the above, for example in areas such as education, rehabilitation, medicine, computer-aided design, skills training, computer games, driver controls, simulation, and visualization.