Advances in acetylcholinesterase-based biosensing technologies for organophosphorus pesticide detection: A comprehensive review (2020–2024)

IF 9.8 1区 农林科学 Q1 CHEMISTRY, APPLIED
Qian Zhang , Jing Yu , Yanping Wei, Rong Yang, Jin Liu, Yangyang Su, Die Gao, Jing Zeng
{"title":"Advances in acetylcholinesterase-based biosensing technologies for organophosphorus pesticide detection: A comprehensive review (2020–2024)","authors":"Qian Zhang ,&nbsp;Jing Yu ,&nbsp;Yanping Wei,&nbsp;Rong Yang,&nbsp;Jin Liu,&nbsp;Yangyang Su,&nbsp;Die Gao,&nbsp;Jing Zeng","doi":"10.1016/j.foodchem.2025.146769","DOIUrl":null,"url":null,"abstract":"<div><div>This review comprehensively summarizes recent advances (2020–2024) in acetylcholinesterase-based biosensing technologies for detecting organophosphorus pesticides in food and environmental matrices. The critical role of innovative functional materials in enhancing biosensor performance through improved enzyme immobilization, signal amplification, and anti-interference capabilities is highlighted. The principles of acetylcholinesterase inhibition, simplified sample pretreatment, and various immobilization strategies are discussed. Electrochemical, optical, dual-mode, and capillary electrophoresis–based biosensing modalities are compared, emphasizing their respective advantages and limitations. Despite their high sensitivity, portability, and cost-effectiveness, acetylcholinesterase-based biosensing technologies face challenges in terms of specificity, anti-interference capabilities, and reproducibility. Strategies to overcome these limitations include developing engineered enzymes, integrating microfluidic pretreatment, employing eco-friendly nanomaterials, and implementing multisignal calibration and intelligent sensing systems. These advancements support a collaborative “screening–confirmation” framework that combines rapid biosensing with confirmatory liquid chromatography/gas chromatography–mass spectrometry techniques, significantly enhancing capabilities in food safety monitoring and environmental protection.</div></div>","PeriodicalId":318,"journal":{"name":"Food Chemistry","volume":"496 ","pages":"Article 146769"},"PeriodicalIF":9.8000,"publicationDate":"2025-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S030881462504021X","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This review comprehensively summarizes recent advances (2020–2024) in acetylcholinesterase-based biosensing technologies for detecting organophosphorus pesticides in food and environmental matrices. The critical role of innovative functional materials in enhancing biosensor performance through improved enzyme immobilization, signal amplification, and anti-interference capabilities is highlighted. The principles of acetylcholinesterase inhibition, simplified sample pretreatment, and various immobilization strategies are discussed. Electrochemical, optical, dual-mode, and capillary electrophoresis–based biosensing modalities are compared, emphasizing their respective advantages and limitations. Despite their high sensitivity, portability, and cost-effectiveness, acetylcholinesterase-based biosensing technologies face challenges in terms of specificity, anti-interference capabilities, and reproducibility. Strategies to overcome these limitations include developing engineered enzymes, integrating microfluidic pretreatment, employing eco-friendly nanomaterials, and implementing multisignal calibration and intelligent sensing systems. These advancements support a collaborative “screening–confirmation” framework that combines rapid biosensing with confirmatory liquid chromatography/gas chromatography–mass spectrometry techniques, significantly enhancing capabilities in food safety monitoring and environmental protection.

Abstract Image

基于乙酰胆碱酯酶的有机磷农药生物传感技术研究进展综述(2020-2024)
本文综述了基于乙酰胆碱酯酶的生物传感技术在食品和环境基质中有机磷农药检测方面的最新进展(2020-2024)。强调了创新功能材料通过改进酶固定、信号放大和抗干扰能力来增强生物传感器性能的关键作用。讨论了乙酰胆碱酯酶抑制原理、简化样品预处理和各种固定策略。比较了电化学、光学、双模和基于毛细管电泳的生物传感方式,强调了它们各自的优势和局限性。尽管具有高灵敏度、便携性和成本效益,但基于乙酰胆碱酯酶的生物传感技术在特异性、抗干扰能力和可重复性方面面临挑战。克服这些限制的策略包括开发工程酶,集成微流体预处理,采用环保纳米材料,实施多信号校准和智能传感系统。这些进步支持了一个协作的“筛选-确认”框架,该框架将快速生物传感与确认性液相色谱/气相色谱-质谱技术相结合,显著提高了食品安全监测和环境保护的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Food Chemistry
Food Chemistry 工程技术-食品科技
CiteScore
16.30
自引率
10.20%
发文量
3130
审稿时长
122 days
期刊介绍: Food Chemistry publishes original research papers dealing with the advancement of the chemistry and biochemistry of foods or the analytical methods/ approach used. All papers should focus on the novelty of the research carried out.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信