Johan Iskandar, Chih-Yi Liu, Mao-Cheng Huang, Chutipol Harnthanasak, Galing Murokinas, Yi-Sheng Chen, Didik Notosudjono, Chih-Chien Lee and Shun-Wei Liu
{"title":"Ultra-high brightness near-infrared perovskite light-emitting diodes enabled by aluminum-doped zinc oxide electron transport layers","authors":"Johan Iskandar, Chih-Yi Liu, Mao-Cheng Huang, Chutipol Harnthanasak, Galing Murokinas, Yi-Sheng Chen, Didik Notosudjono, Chih-Chien Lee and Shun-Wei Liu","doi":"10.1039/D5TC02705E","DOIUrl":null,"url":null,"abstract":"<p >Near-infrared (NIR) perovskite light-emitting diodes (PeLEDs) have achieved substantial gains in quantum efficiency, yet their limited brightness remains a significant constraint for practical deployment. Here, we demonstrate a highly efficient approach to enhancing NIR PeLEDs’ brightness by incorporating a solution-processed aluminum-doped zinc oxide (AZO) electron transport layer (ETL). Systematic structural, optical, and electronic characterizations reveal that AZO enables improved electron transport properties, better energy-level alignment, and enhanced charge injection dynamics. As a result, AZO-integrated FAPbI<small><sub>3</sub></small> PeLEDs exhibit an outstanding brightness of 3313.9 W sr<small><sup>−1</sup></small> m<small><sup>−2</sup></small>, a 146% increase over reference devices. Electrochemical impedance spectroscopy (EIS) further confirms a substantially lower charge transfer resistance (1178.02 Ω) and reduced surface charge recombination resistance (397.11 Ω), indicating more efficient carrier transport and recombination. This work provides a scalable and effective strategy to overcome brightness limitations in NIR PeLEDs, advancing their potential for high-intensity optoelectronic applications, including next-generation display technologies and NIR light sources.</p>","PeriodicalId":84,"journal":{"name":"Journal of Materials Chemistry C","volume":" 41","pages":" 21090-21097"},"PeriodicalIF":5.1000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tc/d5tc02705e","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Near-infrared (NIR) perovskite light-emitting diodes (PeLEDs) have achieved substantial gains in quantum efficiency, yet their limited brightness remains a significant constraint for practical deployment. Here, we demonstrate a highly efficient approach to enhancing NIR PeLEDs’ brightness by incorporating a solution-processed aluminum-doped zinc oxide (AZO) electron transport layer (ETL). Systematic structural, optical, and electronic characterizations reveal that AZO enables improved electron transport properties, better energy-level alignment, and enhanced charge injection dynamics. As a result, AZO-integrated FAPbI3 PeLEDs exhibit an outstanding brightness of 3313.9 W sr−1 m−2, a 146% increase over reference devices. Electrochemical impedance spectroscopy (EIS) further confirms a substantially lower charge transfer resistance (1178.02 Ω) and reduced surface charge recombination resistance (397.11 Ω), indicating more efficient carrier transport and recombination. This work provides a scalable and effective strategy to overcome brightness limitations in NIR PeLEDs, advancing their potential for high-intensity optoelectronic applications, including next-generation display technologies and NIR light sources.
期刊介绍:
The Journal of Materials Chemistry is divided into three distinct sections, A, B, and C, each catering to specific applications of the materials under study:
Journal of Materials Chemistry A focuses primarily on materials intended for applications in energy and sustainability.
Journal of Materials Chemistry B specializes in materials designed for applications in biology and medicine.
Journal of Materials Chemistry C is dedicated to materials suitable for applications in optical, magnetic, and electronic devices.
Example topic areas within the scope of Journal of Materials Chemistry C are listed below. This list is neither exhaustive nor exclusive.
Bioelectronics
Conductors
Detectors
Dielectrics
Displays
Ferroelectrics
Lasers
LEDs
Lighting
Liquid crystals
Memory
Metamaterials
Multiferroics
Photonics
Photovoltaics
Semiconductors
Sensors
Single molecule conductors
Spintronics
Superconductors
Thermoelectrics
Topological insulators
Transistors