Quantum critical electro-optic and piezo-electric nonlinearities

IF 45.8 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Science Pub Date : 2025-10-23 DOI:10.1126/science.adx8657
Christopher P. Anderson, Giovanni Scuri, Aaron Chan, Sungjun Eun, Alexander D. White, Geun Ho Ahn, Christine Jilly, Amir Safavi-Naeini, Kasper Van Gasse, Lu Li, Jelena Vučković
{"title":"Quantum critical electro-optic and piezo-electric nonlinearities","authors":"Christopher P. Anderson,&nbsp;Giovanni Scuri,&nbsp;Aaron Chan,&nbsp;Sungjun Eun,&nbsp;Alexander D. White,&nbsp;Geun Ho Ahn,&nbsp;Christine Jilly,&nbsp;Amir Safavi-Naeini,&nbsp;Kasper Van Gasse,&nbsp;Lu Li,&nbsp;Jelena Vučković","doi":"10.1126/science.adx8657","DOIUrl":null,"url":null,"abstract":"<div >Although electro-optic (EO) nonlinearities are essential for many quantum and classical photonics applications, a major challenge is inefficient modulation in cryogenic environments. Guided by the connection between phase transitions and nonlinearity, we identify the quantum paraelectric perovskite SrTiO<sub>3</sub> as a strong cryogenic EO [&gt;500 picometers per volt (pm/V)] and piezo-electric material (&gt;90 picocoulombs per newton) at <i>T </i>= 5 K, at frequencies to at least 1 megahertz. Furthermore, by tuning SrTiO<sub>3</sub> toward quantum criticality, we more than double the EO and piezo-electric effects, demonstrating a linear Pockels coefficient above 1000 pm/V. Our results probe the link between quantum phase transitions, dielectric susceptibility, and nonlinearity, unlocking opportunities in cryogenic optical and mechanical systems and providing a framework for discovering new nonlinear materials.</div>","PeriodicalId":21678,"journal":{"name":"Science","volume":"390 6771","pages":""},"PeriodicalIF":45.8000,"publicationDate":"2025-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/science.adx8657","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Although electro-optic (EO) nonlinearities are essential for many quantum and classical photonics applications, a major challenge is inefficient modulation in cryogenic environments. Guided by the connection between phase transitions and nonlinearity, we identify the quantum paraelectric perovskite SrTiO3 as a strong cryogenic EO [>500 picometers per volt (pm/V)] and piezo-electric material (>90 picocoulombs per newton) at T = 5 K, at frequencies to at least 1 megahertz. Furthermore, by tuning SrTiO3 toward quantum criticality, we more than double the EO and piezo-electric effects, demonstrating a linear Pockels coefficient above 1000 pm/V. Our results probe the link between quantum phase transitions, dielectric susceptibility, and nonlinearity, unlocking opportunities in cryogenic optical and mechanical systems and providing a framework for discovering new nonlinear materials.
量子临界电光和压电非线性
虽然电光(EO)非线性对于许多量子和经典光子学应用是必不可少的,但低温环境下的低效调制是一个主要挑战。根据相变和非线性之间的联系,我们确定量子准电钙钛矿srtio3是一种强低温EO [>;500皮米/伏(pm/V)]和压电材料(>;90皮库仑/牛顿),在T = 5 K,频率至少为1兆赫兹。此外,通过将srtio3调谐到量子临界,我们将EO和压电效应提高了一倍以上,并证明了线性波克尔斯系数高于1000 pm/V。我们的研究结果探索了量子相变、介电磁化率和非线性之间的联系,为低温光学和机械系统提供了机会,并为发现新的非线性材料提供了框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science
Science 综合性期刊-综合性期刊
CiteScore
61.10
自引率
0.90%
发文量
0
审稿时长
2.1 months
期刊介绍: Science is a leading outlet for scientific news, commentary, and cutting-edge research. Through its print and online incarnations, Science reaches an estimated worldwide readership of more than one million. Science’s authorship is global too, and its articles consistently rank among the world's most cited research. Science serves as a forum for discussion of important issues related to the advancement of science by publishing material on which a consensus has been reached as well as including the presentation of minority or conflicting points of view. Accordingly, all articles published in Science—including editorials, news and comment, and book reviews—are signed and reflect the individual views of the authors and not official points of view adopted by AAAS or the institutions with which the authors are affiliated. Science seeks to publish those papers that are most influential in their fields or across fields and that will significantly advance scientific understanding. Selected papers should present novel and broadly important data, syntheses, or concepts. They should merit recognition by the wider scientific community and general public provided by publication in Science, beyond that provided by specialty journals. Science welcomes submissions from all fields of science and from any source. The editors are committed to the prompt evaluation and publication of submitted papers while upholding high standards that support reproducibility of published research. Science is published weekly; selected papers are published online ahead of print.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信