Polar and non-polar growth of BeMgZnO quaternary alloy thin films for deep ultraviolet photodetectors

IF 4.6 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Teng Zhang, Yuan Zhang, Dahua Ren, Yongdan Zhu, Jinqiao Yi
{"title":"Polar and non-polar growth of BeMgZnO quaternary alloy thin films for deep ultraviolet photodetectors","authors":"Teng Zhang,&nbsp;Yuan Zhang,&nbsp;Dahua Ren,&nbsp;Yongdan Zhu,&nbsp;Jinqiao Yi","doi":"10.1016/j.mssp.2025.110152","DOIUrl":null,"url":null,"abstract":"<div><div>This study demonstrates the successful growth of high-quality BeMgZnO epitaxial thin films with distinct crystallographic orientations (polar <em>c</em>-plane and nonpolar <em>m</em>-plane) for advanced deep-ultraviolet photodetection applications. Under 5 V bias, the developed Au/BeMgZnO/Au metal-semiconductor-metal photodetectors achieve ultra-low dark current (19.5 pA), high on/off ratio (3.11 × 10<sup>3</sup>), fast response speed (rise/recovery times: 2.81 s/0.22 s), and superior spectral selectivity (<em>R</em><sub>280</sub>/<em>R</em><sub>400</sub> &gt; 10<sup>3</sup>). The incorporation of Be and Mg effectively suppresses oxygen vacancy formation in ZnO lattices, reducing dark currents by six orders of magnitude (from mA to pA) compared to pure ZnO detectors while mitigating persistent photoconductivity. Comparative analysis reveals orientation-dependent dynamics: polar <em>c</em>-BeMgZnO detector exhibit faster recovery due to defect-assisted recombination at grain boundaries, enhancing photogenerated carrier annihilation. In contrast, non-polar <em>m</em>-BeMgZnO detector demonstrates significantly higher responsivity, attributed to the synergistic effect of intrinsic <em>c</em>-axis polarization field and applied electric field, which facilitates carrier separation and transport. Remarkably, the nonpolar m-plane configuration enables self-powered operation through polarization-induced built-in potential, achieving sensitive photoresponse under zero bias. These results establish crystallographic orientation control as a key determinant for optimizing detector performance, particularly in polarization-engineered energy-efficient UV photodetectors.</div></div>","PeriodicalId":18240,"journal":{"name":"Materials Science in Semiconductor Processing","volume":"202 ","pages":"Article 110152"},"PeriodicalIF":4.6000,"publicationDate":"2025-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science in Semiconductor Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S136980012500890X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This study demonstrates the successful growth of high-quality BeMgZnO epitaxial thin films with distinct crystallographic orientations (polar c-plane and nonpolar m-plane) for advanced deep-ultraviolet photodetection applications. Under 5 V bias, the developed Au/BeMgZnO/Au metal-semiconductor-metal photodetectors achieve ultra-low dark current (19.5 pA), high on/off ratio (3.11 × 103), fast response speed (rise/recovery times: 2.81 s/0.22 s), and superior spectral selectivity (R280/R400 > 103). The incorporation of Be and Mg effectively suppresses oxygen vacancy formation in ZnO lattices, reducing dark currents by six orders of magnitude (from mA to pA) compared to pure ZnO detectors while mitigating persistent photoconductivity. Comparative analysis reveals orientation-dependent dynamics: polar c-BeMgZnO detector exhibit faster recovery due to defect-assisted recombination at grain boundaries, enhancing photogenerated carrier annihilation. In contrast, non-polar m-BeMgZnO detector demonstrates significantly higher responsivity, attributed to the synergistic effect of intrinsic c-axis polarization field and applied electric field, which facilitates carrier separation and transport. Remarkably, the nonpolar m-plane configuration enables self-powered operation through polarization-induced built-in potential, achieving sensitive photoresponse under zero bias. These results establish crystallographic orientation control as a key determinant for optimizing detector performance, particularly in polarization-engineered energy-efficient UV photodetectors.

Abstract Image

深紫外探测器用BeMgZnO四元合金薄膜的极性和非极性生长
该研究证明了具有不同晶体取向(极性c面和非极性m面)的高质量BeMgZnO外延薄膜的成功生长,用于先进的深紫外光探测应用。在5 V偏置下,所开发的Au/BeMgZnO/Au金属-半导体-金属光电探测器具有超低暗电流(19.5 pA)、高开/关比(3.11 × 103)、快速响应速度(上升/恢复时间:2.81 s/0.22 s)和优越的光谱选择性(R280/R400 > 103)。与纯ZnO探测器相比,Be和Mg的掺入有效地抑制了ZnO晶格中氧空位的形成,减少了6个数量级的暗电流(从mA到pA),同时减轻了持续的光电性。对比分析揭示了取向依赖动力学:极性c-BeMgZnO探测器由于晶界缺陷辅助复合而表现出更快的恢复,增强了光生载流子湮灭。相比之下,非极性m-BeMgZnO探测器的响应率明显更高,这是由于本征c轴极化场和外加电场的协同作用,有利于载流子的分离和输运。值得注意的是,非极性m平面结构可以通过极化诱导的内置电位实现自供电操作,在零偏置下实现敏感的光响应。这些结果表明,晶体取向控制是优化探测器性能的关键决定因素,特别是在偏振工程节能紫外光电探测器中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Science in Semiconductor Processing
Materials Science in Semiconductor Processing 工程技术-材料科学:综合
CiteScore
8.00
自引率
4.90%
发文量
780
审稿时长
42 days
期刊介绍: Materials Science in Semiconductor Processing provides a unique forum for the discussion of novel processing, applications and theoretical studies of functional materials and devices for (opto)electronics, sensors, detectors, biotechnology and green energy. Each issue will aim to provide a snapshot of current insights, new achievements, breakthroughs and future trends in such diverse fields as microelectronics, energy conversion and storage, communications, biotechnology, (photo)catalysis, nano- and thin-film technology, hybrid and composite materials, chemical processing, vapor-phase deposition, device fabrication, and modelling, which are the backbone of advanced semiconductor processing and applications. Coverage will include: advanced lithography for submicron devices; etching and related topics; ion implantation; damage evolution and related issues; plasma and thermal CVD; rapid thermal processing; advanced metallization and interconnect schemes; thin dielectric layers, oxidation; sol-gel processing; chemical bath and (electro)chemical deposition; compound semiconductor processing; new non-oxide materials and their applications; (macro)molecular and hybrid materials; molecular dynamics, ab-initio methods, Monte Carlo, etc.; new materials and processes for discrete and integrated circuits; magnetic materials and spintronics; heterostructures and quantum devices; engineering of the electrical and optical properties of semiconductors; crystal growth mechanisms; reliability, defect density, intrinsic impurities and defects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信