Synthesis of Innovative Photosensitizers for Enhanced Photodynamic Therapy of Drug-Resistant Pathogens and Biofilms.

IF 3.8 2区 医学 Q2 CHEMISTRY, MEDICINAL
Hongshuang Qin, Yanxiang Guo, Chenjie Ma, Caihong Zhang, Ke Gao, Xueyi Sun, Chuanqi Zhao, Tao Liu
{"title":"Synthesis of Innovative Photosensitizers for Enhanced Photodynamic Therapy of Drug-Resistant Pathogens and Biofilms.","authors":"Hongshuang Qin, Yanxiang Guo, Chenjie Ma, Caihong Zhang, Ke Gao, Xueyi Sun, Chuanqi Zhao, Tao Liu","doi":"10.1021/acsinfecdis.5c00564","DOIUrl":null,"url":null,"abstract":"<p><p>Antimicrobial photodynamic therapy (aPDT) has emerged as a potential approach to combating infections triggered by drug-resistant bacteria. However, the selection of photosensitizers for aPDT remains restricted, highlighting the urgent need to develop novel and efficient photosensitizers. Questiomycin A (QA) has garnered attention due to its diverse biomedical activities and good biocompatibility. However, the photodynamic effects of QA and its derivatives have not been explored. Investigating the photodynamic activities of QA-based compounds can provide innovative molecular structures for photosensitizer development. Herein, five derivatives (C1, C2, C3, C4, and C5) of QA are synthesized, and the aPDT activities of these compounds against methicillin-resistant <i>Staphylococcus aureus</i> (MRSA) are assessed. Our findings show that C5- and QA-mediated aPDT exhibits notable bactericidal efficacy, which is better than that of the well-known photosensitizer methylene blue. Especially C5 overcomes the drawbacks associated with the excitation of QA by blue-violet light, such as DNA damage and poor tissue penetration. Mechanism analyses reveal that C5-aPDT can induce singlet oxygen (<sup>1</sup>O<sub>2</sub>) generation to disrupt bacterial structures and functions, as well as eradicate biofilms and MRSA within biofilms. Studies in the mouse infection model indicate that C5-aPDT markedly promotes wound healing and exhibits excellent biocompatibility with a hemolysis rate of only 0.59% and minimal cell viability inhibition (2.96%) at therapeutic concentrations. To our knowledge, this is the first report that QA derivatives possess outstanding photodynamic activities, providing a unique molecular structure for the design of photosensitizers.</p>","PeriodicalId":17,"journal":{"name":"ACS Infectious Diseases","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Infectious Diseases","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acsinfecdis.5c00564","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Antimicrobial photodynamic therapy (aPDT) has emerged as a potential approach to combating infections triggered by drug-resistant bacteria. However, the selection of photosensitizers for aPDT remains restricted, highlighting the urgent need to develop novel and efficient photosensitizers. Questiomycin A (QA) has garnered attention due to its diverse biomedical activities and good biocompatibility. However, the photodynamic effects of QA and its derivatives have not been explored. Investigating the photodynamic activities of QA-based compounds can provide innovative molecular structures for photosensitizer development. Herein, five derivatives (C1, C2, C3, C4, and C5) of QA are synthesized, and the aPDT activities of these compounds against methicillin-resistant Staphylococcus aureus (MRSA) are assessed. Our findings show that C5- and QA-mediated aPDT exhibits notable bactericidal efficacy, which is better than that of the well-known photosensitizer methylene blue. Especially C5 overcomes the drawbacks associated with the excitation of QA by blue-violet light, such as DNA damage and poor tissue penetration. Mechanism analyses reveal that C5-aPDT can induce singlet oxygen (1O2) generation to disrupt bacterial structures and functions, as well as eradicate biofilms and MRSA within biofilms. Studies in the mouse infection model indicate that C5-aPDT markedly promotes wound healing and exhibits excellent biocompatibility with a hemolysis rate of only 0.59% and minimal cell viability inhibition (2.96%) at therapeutic concentrations. To our knowledge, this is the first report that QA derivatives possess outstanding photodynamic activities, providing a unique molecular structure for the design of photosensitizers.

新型光敏剂的合成用于增强耐药病原体和生物膜的光动力治疗。
抗菌光动力疗法(aPDT)已成为对抗耐药细菌引起的感染的潜在方法。然而,用于aPDT的光敏剂的选择仍然有限,突出了开发新型高效光敏剂的迫切需要。问题霉素A (qantiomycin A, QA)因其多样的生物医学活性和良好的生物相容性而备受关注。然而,QA及其衍生物的光动力学效应尚未被探索。研究qa基化合物的光动力学活性可以为光敏剂的开发提供创新的分子结构。本文合成了QA的5个衍生物(C1、C2、C3、C4和C5),并评价了这些化合物对耐甲氧西林金黄色葡萄球菌(MRSA)的aPDT活性。我们的研究结果表明,C5-和qa介导的aPDT具有显著的杀菌效果,优于众所周知的光敏剂亚甲基蓝。特别是C5克服了与蓝紫光激发QA相关的缺点,如DNA损伤和组织穿透性差。机制分析表明,C5-aPDT可以诱导单线态氧(1O2)的产生,破坏细菌的结构和功能,并根除生物膜和生物膜内的MRSA。小鼠感染模型研究表明,C5-aPDT显著促进伤口愈合,并表现出良好的生物相容性,在治疗浓度下溶血率仅为0.59%,细胞活力抑制最小(2.96%)。据我们所知,这是首次报道QA衍生物具有出色的光动力学活性,为光敏剂的设计提供了独特的分子结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Infectious Diseases
ACS Infectious Diseases CHEMISTRY, MEDICINALINFECTIOUS DISEASES&nb-INFECTIOUS DISEASES
CiteScore
9.70
自引率
3.80%
发文量
213
期刊介绍: ACS Infectious Diseases will be the first journal to highlight chemistry and its role in this multidisciplinary and collaborative research area. The journal will cover a diverse array of topics including, but not limited to: * Discovery and development of new antimicrobial agents — identified through target- or phenotypic-based approaches as well as compounds that induce synergy with antimicrobials. * Characterization and validation of drug target or pathways — use of single target and genome-wide knockdown and knockouts, biochemical studies, structural biology, new technologies to facilitate characterization and prioritization of potential drug targets. * Mechanism of drug resistance — fundamental research that advances our understanding of resistance; strategies to prevent resistance. * Mechanisms of action — use of genetic, metabolomic, and activity- and affinity-based protein profiling to elucidate the mechanism of action of clinical and experimental antimicrobial agents. * Host-pathogen interactions — tools for studying host-pathogen interactions, cellular biochemistry of hosts and pathogens, and molecular interactions of pathogens with host microbiota. * Small molecule vaccine adjuvants for infectious disease. * Viral and bacterial biochemistry and molecular biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信