{"title":"Self-activated nonreciprocal transmission isolation via absorption-asymmetry-triggered directional phase transition in VO2-based terahertz metamaterials","authors":"Chenxi Liu, Yanlin Xu, Hanqing Liu and He Ma","doi":"10.1039/D5TC02947C","DOIUrl":null,"url":null,"abstract":"<p >This study theoretically and numerically establishes a novel strategy for self-activated nonreciprocal transmission isolation in terahertz metamaterials, exploiting the absorption asymmetry of a vanadium dioxide (VO<small><sub>2</sub></small>)-based structure to trigger directional phase transition under high-intensity illumination. Through coupled electromagnetic-thermal simulations, we analyze a tri-layer design where asymmetric absorption at specific frequencies—depending on incidence direction—induces markedly different thermal profiles. Crucially, high-intensity waves incident from the VO<small><sub>2</sub></small> side generate sufficient absorption-induced heating to surpass the phase transition threshold locally. This self-triggered phase change drastically suppresses transmission selectively for this direction, while waves incident from the opposing side experience significantly lower absorption and heating, maintaining high transmission. This fundamental asymmetry in thermal response enables nonreciprocal isolation without external excitation. Additionally, the transmission and absorption spectra are analyzed and the influences of absorption asymmetry, irradiation duration, incident power, and polarization direction are also investigated. This work demonstrates that harnessing absorption asymmetry to directionally control phase transition establishes a new paradigm for achieving nonreciprocal electromagnetic wave manipulation.</p>","PeriodicalId":84,"journal":{"name":"Journal of Materials Chemistry C","volume":" 40","pages":" 20491-20499"},"PeriodicalIF":5.1000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/tc/d5tc02947c?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tc/d5tc02947c","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study theoretically and numerically establishes a novel strategy for self-activated nonreciprocal transmission isolation in terahertz metamaterials, exploiting the absorption asymmetry of a vanadium dioxide (VO2)-based structure to trigger directional phase transition under high-intensity illumination. Through coupled electromagnetic-thermal simulations, we analyze a tri-layer design where asymmetric absorption at specific frequencies—depending on incidence direction—induces markedly different thermal profiles. Crucially, high-intensity waves incident from the VO2 side generate sufficient absorption-induced heating to surpass the phase transition threshold locally. This self-triggered phase change drastically suppresses transmission selectively for this direction, while waves incident from the opposing side experience significantly lower absorption and heating, maintaining high transmission. This fundamental asymmetry in thermal response enables nonreciprocal isolation without external excitation. Additionally, the transmission and absorption spectra are analyzed and the influences of absorption asymmetry, irradiation duration, incident power, and polarization direction are also investigated. This work demonstrates that harnessing absorption asymmetry to directionally control phase transition establishes a new paradigm for achieving nonreciprocal electromagnetic wave manipulation.
期刊介绍:
The Journal of Materials Chemistry is divided into three distinct sections, A, B, and C, each catering to specific applications of the materials under study:
Journal of Materials Chemistry A focuses primarily on materials intended for applications in energy and sustainability.
Journal of Materials Chemistry B specializes in materials designed for applications in biology and medicine.
Journal of Materials Chemistry C is dedicated to materials suitable for applications in optical, magnetic, and electronic devices.
Example topic areas within the scope of Journal of Materials Chemistry C are listed below. This list is neither exhaustive nor exclusive.
Bioelectronics
Conductors
Detectors
Dielectrics
Displays
Ferroelectrics
Lasers
LEDs
Lighting
Liquid crystals
Memory
Metamaterials
Multiferroics
Photonics
Photovoltaics
Semiconductors
Sensors
Single molecule conductors
Spintronics
Superconductors
Thermoelectrics
Topological insulators
Transistors