Terahertz Band Traveling-Wave Tube Based on Folded-Waveguide Slow-Wave Structure With Multiple Sheet Beams

IF 1.5 4区 物理与天体物理 Q3 PHYSICS, FLUIDS & PLASMAS
Yanan Ma;Fengying Lu;Rui Zhang;Yong Wang;Suye Lü
{"title":"Terahertz Band Traveling-Wave Tube Based on Folded-Waveguide Slow-Wave Structure With Multiple Sheet Beams","authors":"Yanan Ma;Fengying Lu;Rui Zhang;Yong Wang;Suye Lü","doi":"10.1109/TPS.2025.3597344","DOIUrl":null,"url":null,"abstract":"A novel multiple sheet beams (MSBs) slow-wave structure (SWS), the horizontal multiple sheet beams folded-waveguide SWS (HMSB-FW SWS), was proposed for terahertz (THz) traveling-wave tubes (TWTs). This design aims to enhance the output power and meet the increasing demand for high-frequency and high-power THz radiation sources used in various applications. By utilizing MSB, the HMSB-FW SWS aims to improve the interaction between the electron beam and the electromagnetic wave. Compared with a vertical multiple sheet beams FW-SWS (VMSB-FW SWS), the HMSB-FW SWS offers a higher interaction impedance, leading to enhanced output power and gain. Simulation results indicate that the proposed HMSB-FW TWT exhibits significant improvements by over two times compared with the VMSB-FW TWT in amplification performance. Based on simulation results, with a magnetic field of 0.6 T and driven by an input signal at a frequency of 230 GHz, a saturated power of 100 W was obtained with a gain of 23 dB, an electron efficiency of 10%, and a 3-dB bandwidth of 20 GHz. Due to the limited fabrication accuracy at THz band, the FW-SWS requires specific tolerance and manufacturing compatibility. A study on zero-drive oscillations was performed to assess the stability of the proposed MSB-FW TWT.","PeriodicalId":450,"journal":{"name":"IEEE Transactions on Plasma Science","volume":"53 10","pages":"3179-3186"},"PeriodicalIF":1.5000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Plasma Science","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/11152544/","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

Abstract

A novel multiple sheet beams (MSBs) slow-wave structure (SWS), the horizontal multiple sheet beams folded-waveguide SWS (HMSB-FW SWS), was proposed for terahertz (THz) traveling-wave tubes (TWTs). This design aims to enhance the output power and meet the increasing demand for high-frequency and high-power THz radiation sources used in various applications. By utilizing MSB, the HMSB-FW SWS aims to improve the interaction between the electron beam and the electromagnetic wave. Compared with a vertical multiple sheet beams FW-SWS (VMSB-FW SWS), the HMSB-FW SWS offers a higher interaction impedance, leading to enhanced output power and gain. Simulation results indicate that the proposed HMSB-FW TWT exhibits significant improvements by over two times compared with the VMSB-FW TWT in amplification performance. Based on simulation results, with a magnetic field of 0.6 T and driven by an input signal at a frequency of 230 GHz, a saturated power of 100 W was obtained with a gain of 23 dB, an electron efficiency of 10%, and a 3-dB bandwidth of 20 GHz. Due to the limited fabrication accuracy at THz band, the FW-SWS requires specific tolerance and manufacturing compatibility. A study on zero-drive oscillations was performed to assess the stability of the proposed MSB-FW TWT.
基于多片波束折叠波导慢波结构的太赫兹行波管
提出了一种用于太赫兹行波管的新型多片波束慢波结构——水平多片波束折叠波导慢波结构(HMSB-FW SWS)。本设计旨在提高输出功率,满足各种应用中对高频、大功率太赫兹辐射源日益增长的需求。通过利用MSB, HMSB-FW SWS旨在改善电子束与电磁波之间的相互作用。与垂直多片波束FW-SWS (VMSB-FW SWS)相比,HMSB-FW SWS具有更高的相互作用阻抗,从而提高了输出功率和增益。仿真结果表明,与VMSB-FW行波管相比,HMSB-FW行波管的放大性能提高了2倍以上。仿真结果表明,在磁场为0.6 T,频率为230 GHz的输入信号驱动下,可获得100 W的饱和功率,增益为23 dB,电子效率为10%,3db带宽为20 GHz。由于太赫兹波段的制造精度有限,FW-SWS需要特定的公差和制造兼容性。通过对零驱动振荡的研究来评估所提出的MSB-FW行波管的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Plasma Science
IEEE Transactions on Plasma Science 物理-物理:流体与等离子体
CiteScore
3.00
自引率
20.00%
发文量
538
审稿时长
3.8 months
期刊介绍: The scope covers all aspects of the theory and application of plasma science. It includes the following areas: magnetohydrodynamics; thermionics and plasma diodes; basic plasma phenomena; gaseous electronics; microwave/plasma interaction; electron, ion, and plasma sources; space plasmas; intense electron and ion beams; laser-plasma interactions; plasma diagnostics; plasma chemistry and processing; solid-state plasmas; plasma heating; plasma for controlled fusion research; high energy density plasmas; industrial/commercial applications of plasma physics; plasma waves and instabilities; and high power microwave and submillimeter wave generation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信