Long Fiber Type Carbon Fiber Reinforced Plastic Pedicle Screws Exhibit High Strength, Comparable to Titanium-Alloy Screws, and Are Resistant to Loosening.
{"title":"Long Fiber Type Carbon Fiber Reinforced Plastic Pedicle Screws Exhibit High Strength, Comparable to Titanium-Alloy Screws, and Are Resistant to Loosening.","authors":"Kohei Morita, Hiroki Ohashi, Kenji Tsuchida, Yasuhiro Furuta, Satoshi Tani, Kostadin Karagiozov, Yuichi Murayama","doi":"10.14245/ns.2550268.134","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To develop a pedicle screw for posterior spinal fixation using this long fiber carbon fiber reinforced plastic (CFRP) technology and evaluate its strength and radiolucency compared with titanium (Ti)-alloy screws.</p><p><strong>Methods: </strong>In this preclinical study, the shear strength, torsional strength, loosening resistance, and image evaluation of long fiber type CFRP pedicle screws and Ti-alloy screws were compared. A series of tests was conducted for future clinical-use approval.</p><p><strong>Results: </strong>The long fiber type CFRP pedicle screw (mean±standard deviation: 11,377.7±245.1 N) had superior shear strength compared to the Ti-alloy pedicle screw (10,300.3±249.7 N). The long fiber type CFRP pedicle screw (4.4±0.5 Nm) had inferior torsional strength compared to the Ti-alloy pedicle screw (22.4±0.6 Nm), although it could withstand twice the maximum load applied during surgery, suggesting that this will not be a clinical concern. In terms of loosening resistance, maximum torque values of the long fiber type CFRP pedicle screw and Ti-alloy pedicle screw were 0.99±0.08 and 0.75±0.05 Nm, respectively. The long fiber type CFRP pedicle screw was significantly more resistant to loosening than the Ti-alloy pedicle screw. Moreover, artifacts in the radiographic images were smaller than those observed for the Ti alloy. Biosafety and magnetic resonance safety tests also yielded satisfactory results, supporting approval of the long fiber CFRP pedicle screws for clinical use.</p><p><strong>Conclusion: </strong>Compared to existing Ti-alloy screws, the long fiber type CFRP pedicle screw with innovative manufacturing technology has sufficient performance for clinical use, and its use may make spinal surgery safer and more effective.</p>","PeriodicalId":19269,"journal":{"name":"Neurospine","volume":"22 3","pages":"774-783"},"PeriodicalIF":3.6000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12518906/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurospine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.14245/ns.2550268.134","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: To develop a pedicle screw for posterior spinal fixation using this long fiber carbon fiber reinforced plastic (CFRP) technology and evaluate its strength and radiolucency compared with titanium (Ti)-alloy screws.
Methods: In this preclinical study, the shear strength, torsional strength, loosening resistance, and image evaluation of long fiber type CFRP pedicle screws and Ti-alloy screws were compared. A series of tests was conducted for future clinical-use approval.
Results: The long fiber type CFRP pedicle screw (mean±standard deviation: 11,377.7±245.1 N) had superior shear strength compared to the Ti-alloy pedicle screw (10,300.3±249.7 N). The long fiber type CFRP pedicle screw (4.4±0.5 Nm) had inferior torsional strength compared to the Ti-alloy pedicle screw (22.4±0.6 Nm), although it could withstand twice the maximum load applied during surgery, suggesting that this will not be a clinical concern. In terms of loosening resistance, maximum torque values of the long fiber type CFRP pedicle screw and Ti-alloy pedicle screw were 0.99±0.08 and 0.75±0.05 Nm, respectively. The long fiber type CFRP pedicle screw was significantly more resistant to loosening than the Ti-alloy pedicle screw. Moreover, artifacts in the radiographic images were smaller than those observed for the Ti alloy. Biosafety and magnetic resonance safety tests also yielded satisfactory results, supporting approval of the long fiber CFRP pedicle screws for clinical use.
Conclusion: Compared to existing Ti-alloy screws, the long fiber type CFRP pedicle screw with innovative manufacturing technology has sufficient performance for clinical use, and its use may make spinal surgery safer and more effective.