Global exploration of drought-tolerant bacteria in the wheat rhizosphere reveals microbiota shifts and functional taxa enhancing plant resilience.

IF 21.9 Q1 FOOD SCIENCE & TECHNOLOGY
Qiang Xiang, Kai Yang, Li Cui, An-Qi Sun, Cai-Yu Lu, Jun-Qi Gao, Yi-Long Hao, Bin Ma, Hang-Wei Hu, Brajesh K Singh, Qing-Lin Chen, Yong-Guan Zhu
{"title":"Global exploration of drought-tolerant bacteria in the wheat rhizosphere reveals microbiota shifts and functional taxa enhancing plant resilience.","authors":"Qiang Xiang, Kai Yang, Li Cui, An-Qi Sun, Cai-Yu Lu, Jun-Qi Gao, Yi-Long Hao, Bin Ma, Hang-Wei Hu, Brajesh K Singh, Qing-Lin Chen, Yong-Guan Zhu","doi":"10.1038/s43016-025-01248-2","DOIUrl":null,"url":null,"abstract":"<p><p>Drought stress impacts plant-microbe interactions, reshaping microbial community composition and biogeochemical cycling, thereby reducing crop productivity and threatening food security. However, the specific microbial responses and roles of plant-derived metabolites remain underexplored. Here we reveal that drought stress shifts the composition of wheat-associated microbiota across the phyllosphere, rhizosphere and root endosphere by favouring Actinobacteria and Ascomycota while depleting Proteobacteria and Basidiomycota. Targeted single-cell sorting and sequencing identified 21 active drought-tolerant bacteria (DTB) enriched in genes related to plant fitness and nutrient cycling. These DTB showed significant positive correlations with drought-enriched plant phytochemicals such as jasmonic acid and pipecolic acid. Moreover, the inoculation of synthetic community including four identified drought-tolerant taxa significantly stimulates the wheat growth under drought stress. A global exploration confirmed the widespread distribution of DTB, underscoring their promising potential to enhance crop resilience. This study provides new insights into drought-induced microbiome shifts and highlights microbial candidates for improving crop resilience in a changing climate.</p>","PeriodicalId":94151,"journal":{"name":"Nature food","volume":" ","pages":""},"PeriodicalIF":21.9000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature food","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s43016-025-01248-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Drought stress impacts plant-microbe interactions, reshaping microbial community composition and biogeochemical cycling, thereby reducing crop productivity and threatening food security. However, the specific microbial responses and roles of plant-derived metabolites remain underexplored. Here we reveal that drought stress shifts the composition of wheat-associated microbiota across the phyllosphere, rhizosphere and root endosphere by favouring Actinobacteria and Ascomycota while depleting Proteobacteria and Basidiomycota. Targeted single-cell sorting and sequencing identified 21 active drought-tolerant bacteria (DTB) enriched in genes related to plant fitness and nutrient cycling. These DTB showed significant positive correlations with drought-enriched plant phytochemicals such as jasmonic acid and pipecolic acid. Moreover, the inoculation of synthetic community including four identified drought-tolerant taxa significantly stimulates the wheat growth under drought stress. A global exploration confirmed the widespread distribution of DTB, underscoring their promising potential to enhance crop resilience. This study provides new insights into drought-induced microbiome shifts and highlights microbial candidates for improving crop resilience in a changing climate.

小麦根际抗旱细菌的全球探索揭示了微生物群的变化和功能分类群增强了植物的抗旱能力。
干旱胁迫影响植物与微生物的相互作用,重塑微生物群落组成和生物地球化学循环,从而降低作物生产力,威胁粮食安全。然而,特定的微生物反应和植物源代谢物的作用仍未得到充分研究。在这里,我们发现干旱胁迫改变了小麦相关微生物群在根层圈、根根圈和根内圈的组成,有利于放线菌门和子囊菌门,而消耗变形菌门和担子菌门。靶向单细胞分选和测序鉴定出21株具有植物适应性和养分循环相关基因的抗旱活性菌(DTB)。这些DTB与干旱富集植物的植物化学物质如茉莉酸和胡椒酸呈显著正相关。另外,包括4个已鉴定的抗旱类群在内的合成群落接种对干旱胁迫下的小麦生长有显著的促进作用。一项全球调查证实了DTB的广泛分布,强调了它们在提高作物抗灾能力方面的巨大潜力。这项研究为干旱诱导的微生物组变化提供了新的见解,并强调了在气候变化中提高作物抗逆性的候选微生物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
28.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信