{"title":"CMOS back-end-of-line integration of bilayer ferroelectric tunnel junction in 1-transistor-1-capacitor circuit","authors":"Keerthana Shajil Nair , Muhammad Hamid Raza , Catherine Dubourdieu , Veeresh Deshpande","doi":"10.1016/j.sse.2025.109255","DOIUrl":null,"url":null,"abstract":"<div><div>Ferroelectric tunnel junction (FTJ) devices based on ferroelectric Hf<sub>0.5</sub>Zr<sub>0.5</sub>O<sub>2</sub> (HZO) have recently gained significant interest as CMOS back-end-of-line integrable low power non-volatile memories for neuromorphic computing applications. In this paper, we demonstrate integration of metal-ferroelectric-dielectric-metal bilayer FTJ devices in the back-end-of-line of a 180 nm CMOS technology chip. We present electrical characteristics of the integrated FTJ devices, including the polarization switching and resistance switching behavior with an ON/OFF current ratio of ∼ 18, and an ON current density of ∼ 24.5 μA/cm<sup>2</sup> at a read voltage of 1.8 V. Furthermore, we also demonstrate a 1-transistor-1-capacitor (1T1C) circuit by connecting a back-end FTJ device with a front-end nMOS transistor, which amplifies the ON current of the FTJ device by 2.6 times. Thus, we show the basic building block for the integration of HZO-based FTJ devices for neuromorphic applications.</div></div>","PeriodicalId":21909,"journal":{"name":"Solid-state Electronics","volume":"230 ","pages":"Article 109255"},"PeriodicalIF":1.4000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid-state Electronics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S003811012500200X","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Ferroelectric tunnel junction (FTJ) devices based on ferroelectric Hf0.5Zr0.5O2 (HZO) have recently gained significant interest as CMOS back-end-of-line integrable low power non-volatile memories for neuromorphic computing applications. In this paper, we demonstrate integration of metal-ferroelectric-dielectric-metal bilayer FTJ devices in the back-end-of-line of a 180 nm CMOS technology chip. We present electrical characteristics of the integrated FTJ devices, including the polarization switching and resistance switching behavior with an ON/OFF current ratio of ∼ 18, and an ON current density of ∼ 24.5 μA/cm2 at a read voltage of 1.8 V. Furthermore, we also demonstrate a 1-transistor-1-capacitor (1T1C) circuit by connecting a back-end FTJ device with a front-end nMOS transistor, which amplifies the ON current of the FTJ device by 2.6 times. Thus, we show the basic building block for the integration of HZO-based FTJ devices for neuromorphic applications.
期刊介绍:
It is the aim of this journal to bring together in one publication outstanding papers reporting new and original work in the following areas: (1) applications of solid-state physics and technology to electronics and optoelectronics, including theory and device design; (2) optical, electrical, morphological characterization techniques and parameter extraction of devices; (3) fabrication of semiconductor devices, and also device-related materials growth, measurement and evaluation; (4) the physics and modeling of submicron and nanoscale microelectronic and optoelectronic devices, including processing, measurement, and performance evaluation; (5) applications of numerical methods to the modeling and simulation of solid-state devices and processes; and (6) nanoscale electronic and optoelectronic devices, photovoltaics, sensors, and MEMS based on semiconductor and alternative electronic materials; (7) synthesis and electrooptical properties of materials for novel devices.