{"title":"Selection of candidate paths based on diversity in resource allocation problems on optical networks","authors":"Yuta Mori, Maiko Shigeno","doi":"10.1016/j.osn.2025.100826","DOIUrl":null,"url":null,"abstract":"<div><div>Optical networks play an essential role as an infrastructure supporting advanced information and communication technology. Elastic Optical Networks (EONs) have been designed to improve frequency resource utilization efficiency and enable flexible and efficient network operations. In EONs, the Routing and Spectrum Allocation (RSA) problem — which involves determining routes of transmission and allocating frequency resources — is a critical issue for efficient network operation. Traditionally, the k-Shortest Paths (kSP) approach has been widely used for candidate transmission routes. However, kSP often leads to the concentration of transmission on specific links, creating bottlenecks for resource allocation. To address this challenge, we propose three novel candidate path selection methods for the RSA problem: (1) ensuring path diversity through similarity constraints via 0–1 integer programming, (2) clustering based on path similarity, and (3) suppressing link sharing through node pair grouping. Numerical experiments performed to assure the effectiveness of our proposed methods, and confirmed that introducing path diversity can yield high-quality solutions to the RSA problem under specific scenarios.</div></div>","PeriodicalId":54674,"journal":{"name":"Optical Switching and Networking","volume":"58 ","pages":"Article 100826"},"PeriodicalIF":3.1000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Switching and Networking","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1573427725000335","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Optical networks play an essential role as an infrastructure supporting advanced information and communication technology. Elastic Optical Networks (EONs) have been designed to improve frequency resource utilization efficiency and enable flexible and efficient network operations. In EONs, the Routing and Spectrum Allocation (RSA) problem — which involves determining routes of transmission and allocating frequency resources — is a critical issue for efficient network operation. Traditionally, the k-Shortest Paths (kSP) approach has been widely used for candidate transmission routes. However, kSP often leads to the concentration of transmission on specific links, creating bottlenecks for resource allocation. To address this challenge, we propose three novel candidate path selection methods for the RSA problem: (1) ensuring path diversity through similarity constraints via 0–1 integer programming, (2) clustering based on path similarity, and (3) suppressing link sharing through node pair grouping. Numerical experiments performed to assure the effectiveness of our proposed methods, and confirmed that introducing path diversity can yield high-quality solutions to the RSA problem under specific scenarios.
期刊介绍:
Optical Switching and Networking (OSN) is an archival journal aiming to provide complete coverage of all topics of interest to those involved in the optical and high-speed opto-electronic networking areas. The editorial board is committed to providing detailed, constructive feedback to submitted papers, as well as a fast turn-around time.
Optical Switching and Networking considers high-quality, original, and unpublished contributions addressing all aspects of optical and opto-electronic networks. Specific areas of interest include, but are not limited to:
• Optical and Opto-Electronic Backbone, Metropolitan and Local Area Networks
• Optical Data Center Networks
• Elastic optical networks
• Green Optical Networks
• Software Defined Optical Networks
• Novel Multi-layer Architectures and Protocols (Ethernet, Internet, Physical Layer)
• Optical Networks for Interet of Things (IOT)
• Home Networks, In-Vehicle Networks, and Other Short-Reach Networks
• Optical Access Networks
• Optical Data Center Interconnection Systems
• Optical OFDM and coherent optical network systems
• Free Space Optics (FSO) networks
• Hybrid Fiber - Wireless Networks
• Optical Satellite Networks
• Visible Light Communication Networks
• Optical Storage Networks
• Optical Network Security
• Optical Network Resiliance and Reliability
• Control Plane Issues and Signaling Protocols
• Optical Quality of Service (OQoS) and Impairment Monitoring
• Optical Layer Anycast, Broadcast and Multicast
• Optical Network Applications, Testbeds and Experimental Networks
• Optical Network for Science and High Performance Computing Networks