{"title":"Renewable-fuelled plant factories ensure large-scale food supply but require low-carbon transition for environmental gains.","authors":"Yihan Wang,Chao Wang,Chen Chen,Peng Wang","doi":"10.1038/s43016-025-01240-w","DOIUrl":null,"url":null,"abstract":"Renewable-fuelled plant factories (RFPFs) offer great promise for resilient food production, yet assessing their supply potential and environmental impacts is crucial for wider adoption. Here we conduct a multidimensional geospatial analysis to devise RFPF deployment schemes that aim to meet the population's dietary vegetable demand in China's 369 city-level regions. Results indicate that RFPFs provide multifaceted benefits, particularly in a cross-city scenario that ensures a sufficient supply for all regions, saves 51,390 km2 of cropland and maintains an affordable cost at 5.88 Chinese Yuan kg-1. Nevertheless, compared with conventional methods, RFPFs increase greenhouse gas emissions by 1.99-2.55-fold, with the majority being embodied in the manufacturing of power modules and facilities. Adopting a low-carbon transition pathway mitigates these emissions by approximately 70%, enabling RFPFs to achieve environmental gains. These results show the potential of RFPFs to innovate food production systems while underscoring low-carbon transition as a condition for their large-scale implementation.","PeriodicalId":19090,"journal":{"name":"Nature Food","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Food","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s43016-025-01240-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Renewable-fuelled plant factories (RFPFs) offer great promise for resilient food production, yet assessing their supply potential and environmental impacts is crucial for wider adoption. Here we conduct a multidimensional geospatial analysis to devise RFPF deployment schemes that aim to meet the population's dietary vegetable demand in China's 369 city-level regions. Results indicate that RFPFs provide multifaceted benefits, particularly in a cross-city scenario that ensures a sufficient supply for all regions, saves 51,390 km2 of cropland and maintains an affordable cost at 5.88 Chinese Yuan kg-1. Nevertheless, compared with conventional methods, RFPFs increase greenhouse gas emissions by 1.99-2.55-fold, with the majority being embodied in the manufacturing of power modules and facilities. Adopting a low-carbon transition pathway mitigates these emissions by approximately 70%, enabling RFPFs to achieve environmental gains. These results show the potential of RFPFs to innovate food production systems while underscoring low-carbon transition as a condition for their large-scale implementation.