Tom Jacquin, Simon Wanstall, Inkyu Park, Adam A. Stokes, Hadi Heidari, Theodore Lim and Morteza Amjadi
{"title":"Wearable, near temperature insensitive laser-induced graphene nanocomposite strain sensors","authors":"Tom Jacquin, Simon Wanstall, Inkyu Park, Adam A. Stokes, Hadi Heidari, Theodore Lim and Morteza Amjadi","doi":"10.1039/D5TC02865E","DOIUrl":null,"url":null,"abstract":"<p >Soft and flexible sensors offer a potential paradigm shift in wearable bioelectronics to enhance human–machine interfacing for diagnosis, healthcare monitoring, and prosthetic applications. Soft nanocomposite strain sensors have emerged as a promising solution for the real-time monitoring of biomedical signals due to their conformability, stretchability, and resilience to different strain levels. Nonetheless, these sensors are susceptible to external factors like temperature variations, impeding their functionality in real-world applications. This paper introduces a strategy to tackle the considerable temperature sensitivity of nanocomposite strain sensors by fine-tuning the electrothermal properties of laser-induced graphene nanocomposites. The controlled manipulation of laser parameters governs the carbonization process, and the formation of 3D interconnected conductive networks, leading to nanocomposite strain sensors with temperature sensitivities as low as 0.25% °C<small><sup>−1</sup></small>. These sensors enable real-time strain sensing with minimal interference from thermally induced noise in environments prone to significant temperature fluctuations, such as haptic feedback in prosthetics when grasping hot and cold drinks. Additionally, integrating this approach into the design of electrothermal soft actuators results in a self-sensing soft actuator with near-zero temperature sensitivity up to 100 °C, further demonstrating the versatility of these nanocomposite sensors.</p>","PeriodicalId":84,"journal":{"name":"Journal of Materials Chemistry C","volume":" 39","pages":" 20000-20012"},"PeriodicalIF":5.1000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/tc/d5tc02865e?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tc/d5tc02865e","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Soft and flexible sensors offer a potential paradigm shift in wearable bioelectronics to enhance human–machine interfacing for diagnosis, healthcare monitoring, and prosthetic applications. Soft nanocomposite strain sensors have emerged as a promising solution for the real-time monitoring of biomedical signals due to their conformability, stretchability, and resilience to different strain levels. Nonetheless, these sensors are susceptible to external factors like temperature variations, impeding their functionality in real-world applications. This paper introduces a strategy to tackle the considerable temperature sensitivity of nanocomposite strain sensors by fine-tuning the electrothermal properties of laser-induced graphene nanocomposites. The controlled manipulation of laser parameters governs the carbonization process, and the formation of 3D interconnected conductive networks, leading to nanocomposite strain sensors with temperature sensitivities as low as 0.25% °C−1. These sensors enable real-time strain sensing with minimal interference from thermally induced noise in environments prone to significant temperature fluctuations, such as haptic feedback in prosthetics when grasping hot and cold drinks. Additionally, integrating this approach into the design of electrothermal soft actuators results in a self-sensing soft actuator with near-zero temperature sensitivity up to 100 °C, further demonstrating the versatility of these nanocomposite sensors.
期刊介绍:
The Journal of Materials Chemistry is divided into three distinct sections, A, B, and C, each catering to specific applications of the materials under study:
Journal of Materials Chemistry A focuses primarily on materials intended for applications in energy and sustainability.
Journal of Materials Chemistry B specializes in materials designed for applications in biology and medicine.
Journal of Materials Chemistry C is dedicated to materials suitable for applications in optical, magnetic, and electronic devices.
Example topic areas within the scope of Journal of Materials Chemistry C are listed below. This list is neither exhaustive nor exclusive.
Bioelectronics
Conductors
Detectors
Dielectrics
Displays
Ferroelectrics
Lasers
LEDs
Lighting
Liquid crystals
Memory
Metamaterials
Multiferroics
Photonics
Photovoltaics
Semiconductors
Sensors
Single molecule conductors
Spintronics
Superconductors
Thermoelectrics
Topological insulators
Transistors