Filippa Wentz, Mohsen Mohammadi, Klas Tybrandt, Magnus Berggren, Rickard Arvidsson and Aiman Rahmanudin
{"title":"Integrating environmental assessment into early-stage wearable electronics research","authors":"Filippa Wentz, Mohsen Mohammadi, Klas Tybrandt, Magnus Berggren, Rickard Arvidsson and Aiman Rahmanudin","doi":"10.1039/D5TC02280K","DOIUrl":null,"url":null,"abstract":"<p >This perspective explores the intersection between technology research and environmental assessment during the early-stage development of next-generation wearable electronics, encompassing flexible, stretchable, soft, transient, printed, and hybrid electronics. While significant advancements have been made in the development of high-performance materials, fabrication processes, and device engineering for wearables, their environmental performance is often overlooked. Even when environmental claims for new materials or processes are stated, they are often made without any quantifiable justification. This perspective critically analyses current approaches at assessing environmental performance during the early research stage and recommends how and when to integrate an environmental assessment to ensure both high device functionality and environmental performance. The timeliness of this perspective arises from the urgent need to address environmental concerns in the rapidly expanding wearable electronics research field and commercial use, which is projected to grow exponentially in the coming decade. Research in wearable electronics is multidisciplinary, involving material science, chemistry, physics, biology, electrical engineering, medicine and neuroscience. This perspective recommends timely integration of relevant environmental assessment efforts, including life cycle assessment, into this multidisciplinary mix, thereby ensuring that next-generation wearable electronics are aligned with sustainable development policies and regulatory systems.</p>","PeriodicalId":84,"journal":{"name":"Journal of Materials Chemistry C","volume":" 39","pages":" 19983-19999"},"PeriodicalIF":5.1000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/tc/d5tc02280k?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tc/d5tc02280k","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This perspective explores the intersection between technology research and environmental assessment during the early-stage development of next-generation wearable electronics, encompassing flexible, stretchable, soft, transient, printed, and hybrid electronics. While significant advancements have been made in the development of high-performance materials, fabrication processes, and device engineering for wearables, their environmental performance is often overlooked. Even when environmental claims for new materials or processes are stated, they are often made without any quantifiable justification. This perspective critically analyses current approaches at assessing environmental performance during the early research stage and recommends how and when to integrate an environmental assessment to ensure both high device functionality and environmental performance. The timeliness of this perspective arises from the urgent need to address environmental concerns in the rapidly expanding wearable electronics research field and commercial use, which is projected to grow exponentially in the coming decade. Research in wearable electronics is multidisciplinary, involving material science, chemistry, physics, biology, electrical engineering, medicine and neuroscience. This perspective recommends timely integration of relevant environmental assessment efforts, including life cycle assessment, into this multidisciplinary mix, thereby ensuring that next-generation wearable electronics are aligned with sustainable development policies and regulatory systems.
期刊介绍:
The Journal of Materials Chemistry is divided into three distinct sections, A, B, and C, each catering to specific applications of the materials under study:
Journal of Materials Chemistry A focuses primarily on materials intended for applications in energy and sustainability.
Journal of Materials Chemistry B specializes in materials designed for applications in biology and medicine.
Journal of Materials Chemistry C is dedicated to materials suitable for applications in optical, magnetic, and electronic devices.
Example topic areas within the scope of Journal of Materials Chemistry C are listed below. This list is neither exhaustive nor exclusive.
Bioelectronics
Conductors
Detectors
Dielectrics
Displays
Ferroelectrics
Lasers
LEDs
Lighting
Liquid crystals
Memory
Metamaterials
Multiferroics
Photonics
Photovoltaics
Semiconductors
Sensors
Single molecule conductors
Spintronics
Superconductors
Thermoelectrics
Topological insulators
Transistors