Kyumin Sim, Hyunseok Son, Seokjun Yu, Hae Chul Hwang, Jong Hyun Song, Seung-heon Chris Baek, Hamin Park
{"title":"Hardware Security for Edge Computing Via CMOS-Compatible Multi-Level Flash Memory with Hash-Based Key Generation","authors":"Kyumin Sim, Hyunseok Son, Seokjun Yu, Hae Chul Hwang, Jong Hyun Song, Seung-heon Chris Baek, Hamin Park","doi":"10.1002/aelm.202500484","DOIUrl":null,"url":null,"abstract":"Ensuring secure and energy-efficient authentication of resource-constrained devices has become a critical challenge owing to the rapid expansion of the Internet of Things (IoT) ecosystem. Physically unclonable functions (PUFs) that exploit inherent manufacturing variations to generate device-unique keys have emerged as a promising hardware-based security primitive. In this study, a PUF architecture is proposed that utilizes multi-level programming of flash memory capacitors. Reliable and reproducible binary responses are generated across multiple programmed states by extracting flat-band voltage variations from capacitance–voltage measurements. Performance is evaluated using the uniformity, <i>P</i>-value, inter-Hamming distance, and intra-Hamming distance, which indicated strong randomness, uniqueness, and stability. To further enhance the entropy and cryptographic strength, a hash-based message authentication code (HMAC)-based key derivation function is integrated, which transformed the PUF outputs into high-entropy pseudorandom keys. The final architecture supported key generation with zero standby power and is compatible with commercially available memory structures, thereby enabling low-cost and scalable deployment in secure IoT systems. These results highlight the potential of multi-level memory-based PUFs as a lightweight and robust solution for next-generation hardware security.","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":"19 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aelm.202500484","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Ensuring secure and energy-efficient authentication of resource-constrained devices has become a critical challenge owing to the rapid expansion of the Internet of Things (IoT) ecosystem. Physically unclonable functions (PUFs) that exploit inherent manufacturing variations to generate device-unique keys have emerged as a promising hardware-based security primitive. In this study, a PUF architecture is proposed that utilizes multi-level programming of flash memory capacitors. Reliable and reproducible binary responses are generated across multiple programmed states by extracting flat-band voltage variations from capacitance–voltage measurements. Performance is evaluated using the uniformity, P-value, inter-Hamming distance, and intra-Hamming distance, which indicated strong randomness, uniqueness, and stability. To further enhance the entropy and cryptographic strength, a hash-based message authentication code (HMAC)-based key derivation function is integrated, which transformed the PUF outputs into high-entropy pseudorandom keys. The final architecture supported key generation with zero standby power and is compatible with commercially available memory structures, thereby enabling low-cost and scalable deployment in secure IoT systems. These results highlight the potential of multi-level memory-based PUFs as a lightweight and robust solution for next-generation hardware security.
期刊介绍:
Advanced Electronic Materials is an interdisciplinary forum for peer-reviewed, high-quality, high-impact research in the fields of materials science, physics, and engineering of electronic and magnetic materials. It includes research on physics and physical properties of electronic and magnetic materials, spintronics, electronics, device physics and engineering, micro- and nano-electromechanical systems, and organic electronics, in addition to fundamental research.