Jenna T Ference-Salo, Christopher L O'Connor, Rajasree Menon, Edgar A Otto, Meghan Dailey, Markus Bitzer, Jeffrey A Beamish
{"title":"Decreased parietal epithelial cell density is linked to podocyte depletion and predictors of kidney disease progression in human kidneys.","authors":"Jenna T Ference-Salo, Christopher L O'Connor, Rajasree Menon, Edgar A Otto, Meghan Dailey, Markus Bitzer, Jeffrey A Beamish","doi":"10.1152/ajprenal.00243.2025","DOIUrl":null,"url":null,"abstract":"<p><p>Parietal epithelial cells (PECs) have been implicated in the pathogenesis of glomerulosclerosis in rodent models, and novel technologies are beginning to unravel their contributions to human glomerular disease. Here we report the development, validation, and application of a deep learning approach to analyze the PEC population in over 14,000 glomeruli from nephrectomy samples from patients with minimal overt chronic kidney disease (CKD). This analysis revealed a striking correlation between PEC density and podocyte density. Reduced PEC density also was associated with aging and the presence of diabetes. Furthermore, the PEC density in normal-appearing glomeruli was associated with the frequency of glomerular pathology, including global and segmental glomerulosclerosis, in the same patient sample. Patients with low PEC density had gene expression changes consistent with cellular stress in PECs. These observations support a link between PEC population and the progression of CKD.</p>","PeriodicalId":93867,"journal":{"name":"American journal of physiology. Renal physiology","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Renal physiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1152/ajprenal.00243.2025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Parietal epithelial cells (PECs) have been implicated in the pathogenesis of glomerulosclerosis in rodent models, and novel technologies are beginning to unravel their contributions to human glomerular disease. Here we report the development, validation, and application of a deep learning approach to analyze the PEC population in over 14,000 glomeruli from nephrectomy samples from patients with minimal overt chronic kidney disease (CKD). This analysis revealed a striking correlation between PEC density and podocyte density. Reduced PEC density also was associated with aging and the presence of diabetes. Furthermore, the PEC density in normal-appearing glomeruli was associated with the frequency of glomerular pathology, including global and segmental glomerulosclerosis, in the same patient sample. Patients with low PEC density had gene expression changes consistent with cellular stress in PECs. These observations support a link between PEC population and the progression of CKD.