3D-Printed Field-free Ionization Source for Mass Spectrometry

IF 6.7 1区 化学 Q1 CHEMISTRY, ANALYTICAL
Ran Tian, , , Jiayang Li, , , Yu Xia, , , Juan Li*, , , Ligang Hu*, , and , Richard N. Zare*, 
{"title":"3D-Printed Field-free Ionization Source for Mass Spectrometry","authors":"Ran Tian,&nbsp;, ,&nbsp;Jiayang Li,&nbsp;, ,&nbsp;Yu Xia,&nbsp;, ,&nbsp;Juan Li*,&nbsp;, ,&nbsp;Ligang Hu*,&nbsp;, and ,&nbsp;Richard N. Zare*,&nbsp;","doi":"10.1021/acs.analchem.5c05002","DOIUrl":null,"url":null,"abstract":"<p >Most ambient ionization methods for mass spectrometry require externally applied high-voltage fields to generate charged droplets, limiting their portability and energy efficiency. We report a fully three-dimensional (3D)-printed ionization source, in which a standalone atomizer functions as the droplet-generating ionizer by enabling spontaneous charging through gas–solid triboelectric interactions. The device features a coaxial flow configuration, in which high-velocity sheath gas interacts with a BaTiO<sub>3</sub>-doped poly(lactic acid) (PLA) nozzle surface, generating interfacial charges that are transferred to emerging droplets. Computational fluid dynamics simulations confirm sustained wall shear stress near the outlet, supporting the proposed charge-generation mechanism. By tuning the nozzle’s dielectric composition and outlet geometry, droplet charge density and size can be precisely modulated up to 0.3 nC/μL under optimized conditions. Faraday cup measurements reveal a clear correlation between the structural parameters and total droplet charge. Using methyl viologen (MV<sup>2+</sup>) as a single-electron probe, mass spectra revealed efficient electron transfer and secondary product formation, confirming enhanced interfacial electron availability. These results demonstrate that triboelectric enhancement via a 3D-printed design enables voltage-free ion generation and controllable electron transfer, offering a structurally simple, low-cost, and power-free approach to ambient chemical analysis.</p>","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"97 40","pages":"22390–22396"},"PeriodicalIF":6.7000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.analchem.5c05002","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Most ambient ionization methods for mass spectrometry require externally applied high-voltage fields to generate charged droplets, limiting their portability and energy efficiency. We report a fully three-dimensional (3D)-printed ionization source, in which a standalone atomizer functions as the droplet-generating ionizer by enabling spontaneous charging through gas–solid triboelectric interactions. The device features a coaxial flow configuration, in which high-velocity sheath gas interacts with a BaTiO3-doped poly(lactic acid) (PLA) nozzle surface, generating interfacial charges that are transferred to emerging droplets. Computational fluid dynamics simulations confirm sustained wall shear stress near the outlet, supporting the proposed charge-generation mechanism. By tuning the nozzle’s dielectric composition and outlet geometry, droplet charge density and size can be precisely modulated up to 0.3 nC/μL under optimized conditions. Faraday cup measurements reveal a clear correlation between the structural parameters and total droplet charge. Using methyl viologen (MV2+) as a single-electron probe, mass spectra revealed efficient electron transfer and secondary product formation, confirming enhanced interfacial electron availability. These results demonstrate that triboelectric enhancement via a 3D-printed design enables voltage-free ion generation and controllable electron transfer, offering a structurally simple, low-cost, and power-free approach to ambient chemical analysis.

Abstract Image

用于质谱的3d打印无场电离源。
大多数用于质谱分析的环境电离方法需要外部施加高压场来产生带电液滴,这限制了它们的可移植性和能源效率。我们报道了一个完全三维(3D)打印的电离源,其中一个独立的雾化器通过气固摩擦电相互作用实现自发充电,作为产生液滴的电离器。该装置具有同轴流结构,其中高速鞘层气体与掺杂batio3的聚乳酸(PLA)喷嘴表面相互作用,产生界面电荷,并将其转移到新兴液滴上。计算流体动力学模拟证实了出口附近持续的壁面剪切应力,支持了所提出的电荷产生机制。通过调整喷嘴的介电成分和出口几何形状,在优化条件下可以精确调节液滴的电荷密度和大小,最高可达0.3 nC/μL。法拉第杯的测量结果揭示了结构参数与液滴总电荷之间的明显相关性。使用甲基紫素(MV2+)作为单电子探针,质谱显示了有效的电子转移和二次产物形成,证实了界面电子可用性的增强。这些结果表明,通过3d打印设计的摩擦电增强可以实现无电压离子产生和可控的电子转移,为环境化学分析提供了一种结构简单、低成本、无功耗的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Analytical Chemistry
Analytical Chemistry 化学-分析化学
CiteScore
12.10
自引率
12.20%
发文量
1949
审稿时长
1.4 months
期刊介绍: Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信