The thermal cycling response of Sn-Zn, Sn-Ag-Cu and Sn-Bi solder in industrial production

IF 1.9 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Tianyuan Chen , Mengran Zhou , Hao Fu , Xiaohua Xu , Xinhua Dong , Yunjian Zhao , Gaoqiang Chen , Gong Zhang , Qingyu Shi
{"title":"The thermal cycling response of Sn-Zn, Sn-Ag-Cu and Sn-Bi solder in industrial production","authors":"Tianyuan Chen ,&nbsp;Mengran Zhou ,&nbsp;Hao Fu ,&nbsp;Xiaohua Xu ,&nbsp;Xinhua Dong ,&nbsp;Yunjian Zhao ,&nbsp;Gaoqiang Chen ,&nbsp;Gong Zhang ,&nbsp;Qingyu Shi","doi":"10.1016/j.microrel.2025.115925","DOIUrl":null,"url":null,"abstract":"<div><div>The reliability of different solder joints assembled with Sn-Zn, Sn-Ag-Cu, and Sn-Bi solders under thermal cycling conditions based on industrial production conditions was analyzed in this study. The results of dye and pull test indicated that there were significant differences in the number, types, and location of fractures at different component joints soldered with different solder. Due to the excellent mechanical properties and unique intermetallic compound (IMC) composition, the number of fractures in Sn-Zn solder joints is remarkably lower than the Sn-Ag-Cu and Sn-Bi solder, indicating that the Sn-Zn system is more reliable under thermal cycling. These findings demonstrated that Sn-Zn solder is more suitable for industrial production of the complex printed circuit boards (PCBs) and has a better durability.</div></div>","PeriodicalId":51131,"journal":{"name":"Microelectronics Reliability","volume":"175 ","pages":"Article 115925"},"PeriodicalIF":1.9000,"publicationDate":"2025-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microelectronics Reliability","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0026271425003385","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The reliability of different solder joints assembled with Sn-Zn, Sn-Ag-Cu, and Sn-Bi solders under thermal cycling conditions based on industrial production conditions was analyzed in this study. The results of dye and pull test indicated that there were significant differences in the number, types, and location of fractures at different component joints soldered with different solder. Due to the excellent mechanical properties and unique intermetallic compound (IMC) composition, the number of fractures in Sn-Zn solder joints is remarkably lower than the Sn-Ag-Cu and Sn-Bi solder, indicating that the Sn-Zn system is more reliable under thermal cycling. These findings demonstrated that Sn-Zn solder is more suitable for industrial production of the complex printed circuit boards (PCBs) and has a better durability.
工业生产中Sn-Zn、Sn-Ag-Cu和Sn-Bi焊料的热循环响应
本文以工业生产条件为基础,分析了不同Sn-Zn、Sn-Ag-Cu和Sn-Bi焊料在热循环条件下的焊接可靠性。染色和拉拔试验结果表明,不同焊料焊接的不同组份接头的断口数量、断口类型和断口位置存在显著差异。由于优异的力学性能和独特的金属间化合物(IMC)组成,Sn-Zn焊点的断口数量明显低于Sn-Ag-Cu和Sn-Bi焊点,表明Sn-Zn体系在热循环下更加可靠。研究结果表明,锡锌焊料更适合于复杂印刷电路板的工业生产,并且具有更好的耐用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Microelectronics Reliability
Microelectronics Reliability 工程技术-工程:电子与电气
CiteScore
3.30
自引率
12.50%
发文量
342
审稿时长
68 days
期刊介绍: Microelectronics Reliability, is dedicated to disseminating the latest research results and related information on the reliability of microelectronic devices, circuits and systems, from materials, process and manufacturing, to design, testing and operation. The coverage of the journal includes the following topics: measurement, understanding and analysis; evaluation and prediction; modelling and simulation; methodologies and mitigation. Papers which combine reliability with other important areas of microelectronics engineering, such as design, fabrication, integration, testing, and field operation will also be welcome, and practical papers reporting case studies in the field and specific application domains are particularly encouraged. Most accepted papers will be published as Research Papers, describing significant advances and completed work. Papers reviewing important developing topics of general interest may be accepted for publication as Review Papers. Urgent communications of a more preliminary nature and short reports on completed practical work of current interest may be considered for publication as Research Notes. All contributions are subject to peer review by leading experts in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信