Physics-based compact model of subband energy for GAAFETs including corner rounding and geometric variability analysis utilizing Monte Carlo simulation

IF 1.4 4区 物理与天体物理 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Swapna Sarker, Abhishek Kumar, Avirup Dasgupta
{"title":"Physics-based compact model of subband energy for GAAFETs including corner rounding and geometric variability analysis utilizing Monte Carlo simulation","authors":"Swapna Sarker,&nbsp;Abhishek Kumar,&nbsp;Avirup Dasgupta","doi":"10.1016/j.sse.2025.109253","DOIUrl":null,"url":null,"abstract":"<div><div>We propose a geometry-dependent compact model for subband energies of stacked Gate-All-Around Field Effect Nanosheet Transistors (GAAFETs). The proposed model captures impact of the corner radius along with the width and thickness of the nanosheet on the subband energies. It is crucial to include corner radius dependence since, for highly scaled GAAFETs, variation in corner radius results in considerable change in the geometrical confinement which affects the terminal characteristics of the device. The proposed compact model has been leveraged to perform detailed variability analysis of the GAAFET. The model has been implemented in the industry standard BSIM-CMG framework and validated with subband energy calculations from TCAD. To the best of our knowledge, this is the first variability-aware compact model for subband energies in GAAFETs that takes into account the effect of corner rounding and its impact on terminal characteristics.</div></div>","PeriodicalId":21909,"journal":{"name":"Solid-state Electronics","volume":"230 ","pages":"Article 109253"},"PeriodicalIF":1.4000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid-state Electronics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038110125001984","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a geometry-dependent compact model for subband energies of stacked Gate-All-Around Field Effect Nanosheet Transistors (GAAFETs). The proposed model captures impact of the corner radius along with the width and thickness of the nanosheet on the subband energies. It is crucial to include corner radius dependence since, for highly scaled GAAFETs, variation in corner radius results in considerable change in the geometrical confinement which affects the terminal characteristics of the device. The proposed compact model has been leveraged to perform detailed variability analysis of the GAAFET. The model has been implemented in the industry standard BSIM-CMG framework and validated with subband energy calculations from TCAD. To the best of our knowledge, this is the first variability-aware compact model for subband energies in GAAFETs that takes into account the effect of corner rounding and its impact on terminal characteristics.
基于物理的GAAFETs子带能量紧凑模型,包括角化和利用蒙特卡罗模拟的几何变异性分析
本文提出了一种与几何相关的层叠栅极全能场效应纳米片晶体管(gaafet)子带能量的紧凑模型。该模型捕获了角半径、纳米片宽度和厚度对子带能量的影响。包括拐角半径依赖是至关重要的,因为对于高尺度gaafet,拐角半径的变化会导致几何约束的相当大的变化,从而影响器件的终端特性。所提出的紧凑模型已被用于执行GAAFET的详细变异性分析。该模型已在工业标准BSIM-CMG框架中实现,并通过TCAD的子带能量计算进行了验证。据我们所知,这是gaafet中第一个考虑到圆角效应及其对终端特性影响的子带能量变异性感知紧凑模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Solid-state Electronics
Solid-state Electronics 物理-工程:电子与电气
CiteScore
3.00
自引率
5.90%
发文量
212
审稿时长
3 months
期刊介绍: It is the aim of this journal to bring together in one publication outstanding papers reporting new and original work in the following areas: (1) applications of solid-state physics and technology to electronics and optoelectronics, including theory and device design; (2) optical, electrical, morphological characterization techniques and parameter extraction of devices; (3) fabrication of semiconductor devices, and also device-related materials growth, measurement and evaluation; (4) the physics and modeling of submicron and nanoscale microelectronic and optoelectronic devices, including processing, measurement, and performance evaluation; (5) applications of numerical methods to the modeling and simulation of solid-state devices and processes; and (6) nanoscale electronic and optoelectronic devices, photovoltaics, sensors, and MEMS based on semiconductor and alternative electronic materials; (7) synthesis and electrooptical properties of materials for novel devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信