A comprehensive study on the influence of spatial power distribution on time-dependent keyhole behavior in laser beam welding of copper by means of high-speed synchrotron X-ray imaging
Klaus Schricker , Leander Schmidt , Falk Nagel , Christian Diegel , Hannes Friedmann , Marc Seibold , Peter Hellwig , Fabian Fröhlich , Peter Kallage , Yunhui Chen , Herwig Requardt , Alexander Rack , Jean Pierre Bergmann
{"title":"A comprehensive study on the influence of spatial power distribution on time-dependent keyhole behavior in laser beam welding of copper by means of high-speed synchrotron X-ray imaging","authors":"Klaus Schricker , Leander Schmidt , Falk Nagel , Christian Diegel , Hannes Friedmann , Marc Seibold , Peter Hellwig , Fabian Fröhlich , Peter Kallage , Yunhui Chen , Herwig Requardt , Alexander Rack , Jean Pierre Bergmann","doi":"10.1016/j.optlastec.2025.113999","DOIUrl":null,"url":null,"abstract":"<div><div>This paper examines the impact of spatial power distributions on the time-dependent keyhole behavior during laser beam welding of copper using high-speed synchrotron X-ray imaging. The experimental setup utilized a COHERENT HighLight FL8000-ARM fiber laser with concentric intensity distribution created by an optical fiber cable. The European Synchrotron Radiation Facility (ESRF, beamline ID19) was used to conduct high-speed synchrotron imaging at 20,000 images per second to study the spatio-temporal keyhole behavior. Keyhole geometries were extracted through advanced image processing techniques, allowing quantification of parameters like depth, aperture, bulging, and determination of related oscillation frequencies. The results showed that core-dominated processes exhibit significant variations in keyhole geometry. In contrast, ring-dominated processes exhibited reduced penetration depths but increased melt pool dynamics due to altered absorption conditions and increased temperatures within the melt pool. A stabilized core-ring power distribution minimized fluctuations, resulting in improved process stability. The findings were summarized in a model concept describing three characteristic keyhole regimes: core-dominated, ring-dominated, and stabilized core-ring processes.</div></div>","PeriodicalId":19511,"journal":{"name":"Optics and Laser Technology","volume":"192 ","pages":"Article 113999"},"PeriodicalIF":5.0000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics and Laser Technology","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030399225015907","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper examines the impact of spatial power distributions on the time-dependent keyhole behavior during laser beam welding of copper using high-speed synchrotron X-ray imaging. The experimental setup utilized a COHERENT HighLight FL8000-ARM fiber laser with concentric intensity distribution created by an optical fiber cable. The European Synchrotron Radiation Facility (ESRF, beamline ID19) was used to conduct high-speed synchrotron imaging at 20,000 images per second to study the spatio-temporal keyhole behavior. Keyhole geometries were extracted through advanced image processing techniques, allowing quantification of parameters like depth, aperture, bulging, and determination of related oscillation frequencies. The results showed that core-dominated processes exhibit significant variations in keyhole geometry. In contrast, ring-dominated processes exhibited reduced penetration depths but increased melt pool dynamics due to altered absorption conditions and increased temperatures within the melt pool. A stabilized core-ring power distribution minimized fluctuations, resulting in improved process stability. The findings were summarized in a model concept describing three characteristic keyhole regimes: core-dominated, ring-dominated, and stabilized core-ring processes.
期刊介绍:
Optics & Laser Technology aims to provide a vehicle for the publication of a broad range of high quality research and review papers in those fields of scientific and engineering research appertaining to the development and application of the technology of optics and lasers. Papers describing original work in these areas are submitted to rigorous refereeing prior to acceptance for publication.
The scope of Optics & Laser Technology encompasses, but is not restricted to, the following areas:
•development in all types of lasers
•developments in optoelectronic devices and photonics
•developments in new photonics and optical concepts
•developments in conventional optics, optical instruments and components
•techniques of optical metrology, including interferometry and optical fibre sensors
•LIDAR and other non-contact optical measurement techniques, including optical methods in heat and fluid flow
•applications of lasers to materials processing, optical NDT display (including holography) and optical communication
•research and development in the field of laser safety including studies of hazards resulting from the applications of lasers (laser safety, hazards of laser fume)
•developments in optical computing and optical information processing
•developments in new optical materials
•developments in new optical characterization methods and techniques
•developments in quantum optics
•developments in light assisted micro and nanofabrication methods and techniques
•developments in nanophotonics and biophotonics
•developments in imaging processing and systems