{"title":"PLANTA Protocol for the Direct Detection and Identification of Bioactive Compounds in Complex Mixtures via Combined NMR-HPTLC-Based Heterocovariance.","authors":"Vaios Amountzias,Evagelos Gikas,Nektarios Aligiannis","doi":"10.1021/acs.analchem.5c02192","DOIUrl":null,"url":null,"abstract":"The assignment of bioactivity to compounds within complex natural product (NPs) mixtures remains a significant challenge in NPs research. The present research introduces a comprehensive protocol, named \"PLANTA (PhytochemicaL Analysis for NaTural bioActives)\" protocol, for the detection and identification of bioactive compounds in complex natural extracts prior to isolation combining the NMR-HeteroCovariance Approach (NMR-HetCA), high-performance thin-layer chromatography (HPTLC), and chemometric techniques. This study emphasizes two novel components: STOCSY-guided targeted spectral depletion, adapted to resolve overlapping NMR signals in complex matrices, improve minor component detection, and facilitate identification through NMR databases, as well as a new SHY variant termed SH-SCY (Statistical Heterocovariance - SpectroChromatographY), a new cross-correlation method linking orthogonal datasets by identifying the corresponding HPTLC spot from a single NMR peak and reconstructing of the 1H NMR spectrum from a specific HPTLC spot, enhancing dereplication confidence. In this proof-of-concept study, an artificial extract (ArtExtr) composed of 59 standard compounds was evaluated for the detection of compounds active against the free radical 2,2-diphenyl-1-picrylhydrazyl (DPPH). Statistical approaches were applied to the spectral, chromatographic, and bioactivity data to identify the highly correlated bioactive compounds. The PLANTA protocol achieved an 89.5% detection rate of active metabolites and 73.7% correct identification of them. The integration of NMR and HPTLC with HetCA provides a robust and sensitive strategy for preisolation identification of bioactive constituents. This methodology addresses core challenges in metabolite profiling of complex mixtures and offers a streamlined, reproducible workflow for natural product dereplication and discovery.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"98 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.5c02192","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The assignment of bioactivity to compounds within complex natural product (NPs) mixtures remains a significant challenge in NPs research. The present research introduces a comprehensive protocol, named "PLANTA (PhytochemicaL Analysis for NaTural bioActives)" protocol, for the detection and identification of bioactive compounds in complex natural extracts prior to isolation combining the NMR-HeteroCovariance Approach (NMR-HetCA), high-performance thin-layer chromatography (HPTLC), and chemometric techniques. This study emphasizes two novel components: STOCSY-guided targeted spectral depletion, adapted to resolve overlapping NMR signals in complex matrices, improve minor component detection, and facilitate identification through NMR databases, as well as a new SHY variant termed SH-SCY (Statistical Heterocovariance - SpectroChromatographY), a new cross-correlation method linking orthogonal datasets by identifying the corresponding HPTLC spot from a single NMR peak and reconstructing of the 1H NMR spectrum from a specific HPTLC spot, enhancing dereplication confidence. In this proof-of-concept study, an artificial extract (ArtExtr) composed of 59 standard compounds was evaluated for the detection of compounds active against the free radical 2,2-diphenyl-1-picrylhydrazyl (DPPH). Statistical approaches were applied to the spectral, chromatographic, and bioactivity data to identify the highly correlated bioactive compounds. The PLANTA protocol achieved an 89.5% detection rate of active metabolites and 73.7% correct identification of them. The integration of NMR and HPTLC with HetCA provides a robust and sensitive strategy for preisolation identification of bioactive constituents. This methodology addresses core challenges in metabolite profiling of complex mixtures and offers a streamlined, reproducible workflow for natural product dereplication and discovery.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.