{"title":"\"Can we use a biomarker detection algorithm to measure the effectiveness of 14-channel neurofeedback in dyslexia?\"","authors":"Günet Eroğlu, Raja Abou Harb","doi":"10.1080/21622965.2025.2545272","DOIUrl":null,"url":null,"abstract":"<p><p>Dyslexia, one of children's most common neurological diversities, primarily manifests as a reduced reading ability. Genetic factors contribute to dyslexia, with contemporary theories attributing it to a delay in left hemispheric lateralization that reduces effective reading and writing skills. To assist dyslexic children, smartphone application, Auto Train Brain, has been developed to enhance reading comprehension and speed. Previously, the efficacy of the mobile application's training program was assessed using psychometric tests; however, our study employed a biomarker detection software to evaluate the neurofeedback's impact. Machine learning (ML) techniques have recently gained traction in differentiating between dyslexia and typically developing children (TDC). The dataset of this study consists of 100 sessions of 2-minute resting-state eyes-open 14-channel Quantitative Electroencephalography (QEEG) data from 100 children with dyslexia and 100 TDC. Therefore, the dyslexia biomarker detection software assessed the efficacy of the 14-channel neurofeedback administered via Auto Train Brain. Results showed significant improvement in electrophysiological normalization, increasing from 30% in the first 20 sessions to 61% by the end of the training. A two-proportion Z-test confirmed this improvement was statistically significant (Z = -3.96, <i>p</i> = 0.00007), particularly between the 1-20 and 1-60 session intervals (Z = -2.66, <i>p</i> = 0.0079).</p>","PeriodicalId":8047,"journal":{"name":"Applied Neuropsychology: Child","volume":" ","pages":"1-14"},"PeriodicalIF":1.1000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Neuropsychology: Child","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1080/21622965.2025.2545272","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Dyslexia, one of children's most common neurological diversities, primarily manifests as a reduced reading ability. Genetic factors contribute to dyslexia, with contemporary theories attributing it to a delay in left hemispheric lateralization that reduces effective reading and writing skills. To assist dyslexic children, smartphone application, Auto Train Brain, has been developed to enhance reading comprehension and speed. Previously, the efficacy of the mobile application's training program was assessed using psychometric tests; however, our study employed a biomarker detection software to evaluate the neurofeedback's impact. Machine learning (ML) techniques have recently gained traction in differentiating between dyslexia and typically developing children (TDC). The dataset of this study consists of 100 sessions of 2-minute resting-state eyes-open 14-channel Quantitative Electroencephalography (QEEG) data from 100 children with dyslexia and 100 TDC. Therefore, the dyslexia biomarker detection software assessed the efficacy of the 14-channel neurofeedback administered via Auto Train Brain. Results showed significant improvement in electrophysiological normalization, increasing from 30% in the first 20 sessions to 61% by the end of the training. A two-proportion Z-test confirmed this improvement was statistically significant (Z = -3.96, p = 0.00007), particularly between the 1-20 and 1-60 session intervals (Z = -2.66, p = 0.0079).
期刊介绍:
Applied Neuropsychology: Child publishes clinical neuropsychological articles concerning assessment, brain functioning and neuroimaging, neuropsychological treatment, and rehabilitation in children. Full-length articles and brief communications are included. Case studies of child patients carefully assessing the nature, course, or treatment of clinical neuropsychological dysfunctions in the context of scientific literature, are suitable. Review manuscripts addressing critical issues are encouraged. Preference is given to papers of clinical relevance to others in the field. All submitted manuscripts are subject to initial appraisal by the Editor-in-Chief, and, if found suitable for further considerations are peer reviewed by independent, anonymous expert referees. All peer review is single-blind and submission is online via ScholarOne Manuscripts.