Electroactive naphthalimide and naphthalenediimide interlayers for inverted perovskite solar cells

IF 5.1 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Konstantina-Kalliopi Armadorou, Ghewa AlSabeh, Andrea Vezzosi, Murad Najafov, Pietro Nasturzio, Paul Zimmermann, Alexander Hinderhofer, Jinhyun Kim, Likai Zheng, Tiziano Agostino Caldara, Virginia Carnevali, Vladislav Slama, Nikolaos Lempesis, Frank Schreiber, Shaik M. Zakeeruddin, Ursula Rothlisberger, Lukas Pfeifer, Felix T. Eickemeyer, Jovana V. Milić and Michael Grätzel
{"title":"Electroactive naphthalimide and naphthalenediimide interlayers for inverted perovskite solar cells","authors":"Konstantina-Kalliopi Armadorou, Ghewa AlSabeh, Andrea Vezzosi, Murad Najafov, Pietro Nasturzio, Paul Zimmermann, Alexander Hinderhofer, Jinhyun Kim, Likai Zheng, Tiziano Agostino Caldara, Virginia Carnevali, Vladislav Slama, Nikolaos Lempesis, Frank Schreiber, Shaik M. Zakeeruddin, Ursula Rothlisberger, Lukas Pfeifer, Felix T. Eickemeyer, Jovana V. Milić and Michael Grätzel","doi":"10.1039/D5TC01418B","DOIUrl":null,"url":null,"abstract":"<p >Perovskite solar cells have garnered significant interest, yet their limited operational stability remains a major challenge. This is especially pronounced at the interface with charge transport layers. In inverted p–i–n perovskite solar cells, fullerene-based electron transport layers pose critical stability issues. This has stimulated the application of low-dimensional perovskite interlayers featuring alkylammonium-based organic spacers that template perovskite slabs to enhance operational stabilities. However, these materials are traditionally based on organic cations that are electronically insulating, limiting charge extraction and device performance. We demonstrate the capacity to access low-dimensional perovskites incorporating electron-accepting naphthalimide- and naphthalenediimide-based spacers and use the corresponding organic moieties to modify or replace fullerene electron-transport layers, forming an electroactive interface that serves charge-transport. This resulted in superior performance with power conversion efficiencies exceeding 20% and enhanced operational stability, highlighting the potential of electroactive interlayers for advancing inverted perovskite solar cells.</p>","PeriodicalId":84,"journal":{"name":"Journal of Materials Chemistry C","volume":" 39","pages":" 20040-20048"},"PeriodicalIF":5.1000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12482984/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tc/d5tc01418b","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Perovskite solar cells have garnered significant interest, yet their limited operational stability remains a major challenge. This is especially pronounced at the interface with charge transport layers. In inverted p–i–n perovskite solar cells, fullerene-based electron transport layers pose critical stability issues. This has stimulated the application of low-dimensional perovskite interlayers featuring alkylammonium-based organic spacers that template perovskite slabs to enhance operational stabilities. However, these materials are traditionally based on organic cations that are electronically insulating, limiting charge extraction and device performance. We demonstrate the capacity to access low-dimensional perovskites incorporating electron-accepting naphthalimide- and naphthalenediimide-based spacers and use the corresponding organic moieties to modify or replace fullerene electron-transport layers, forming an electroactive interface that serves charge-transport. This resulted in superior performance with power conversion efficiencies exceeding 20% and enhanced operational stability, highlighting the potential of electroactive interlayers for advancing inverted perovskite solar cells.

Abstract Image

反向钙钛矿太阳能电池的电活性萘酰亚胺和萘二酰亚胺中间层。
钙钛矿太阳能电池引起了人们极大的兴趣,但其有限的运行稳定性仍然是主要的挑战。这在与电荷传输层的界面上尤其明显。在倒p-i-n钙钛矿太阳能电池中,富勒烯基电子传输层带来了关键的稳定性问题。这刺激了低维钙钛矿夹层的应用,该夹层以烷基铵基有机间隔剂为特征,模板钙钛矿板以提高操作稳定性。然而,这些材料传统上是基于有机阳离子的,它们是电子绝缘的,限制了电荷提取和器件性能。我们展示了结合电子接受萘酰亚胺和萘二亚胺基间隔剂的低维钙钛矿的访问能力,并使用相应的有机部分来修饰或取代富勒烯电子传输层,形成服务于电荷传输的电活性界面。这导致了卓越的性能,功率转换效率超过20%,并增强了运行稳定性,突出了电活性中间层在推进倒置钙钛矿太阳能电池方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Chemistry C
Journal of Materials Chemistry C MATERIALS SCIENCE, MULTIDISCIPLINARY-PHYSICS, APPLIED
CiteScore
10.80
自引率
6.20%
发文量
1468
期刊介绍: The Journal of Materials Chemistry is divided into three distinct sections, A, B, and C, each catering to specific applications of the materials under study: Journal of Materials Chemistry A focuses primarily on materials intended for applications in energy and sustainability. Journal of Materials Chemistry B specializes in materials designed for applications in biology and medicine. Journal of Materials Chemistry C is dedicated to materials suitable for applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry C are listed below. This list is neither exhaustive nor exclusive. Bioelectronics Conductors Detectors Dielectrics Displays Ferroelectrics Lasers LEDs Lighting Liquid crystals Memory Metamaterials Multiferroics Photonics Photovoltaics Semiconductors Sensors Single molecule conductors Spintronics Superconductors Thermoelectrics Topological insulators Transistors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信