{"title":"Rv2647-Mediated NLRP3 Ubiquitination Inhibits Macrophage Pyroptosis and Promotes <i>Mycobacterium tuberculosis</i> Survival.","authors":"Xiao Jin, Haihao Yan, Xiaolin Chen, Jiao Feng, Guoli Li, Jing Yao, Xingran Du, Ganzhu Feng","doi":"10.1021/acsinfecdis.5c00192","DOIUrl":null,"url":null,"abstract":"<p><p>Inflammasome-mediated pyroptosis and cytokine release are crucial host defenses against intracellular pathogens. <i>Mycobacterium tuberculosis</i> (<i>M. tb</i>) is a successful intracellular pathogen, and it is largely unclear how it evades immune clearance and persists in macrophages. This study investigated whether the Rv2647 protein acts as a key virulence factor of <i>M. tb</i> and explored the potential mechanism of inhibiting macrophage pyroptosis and promoting <i>M. tb</i> survival. The results showed Rv2647 promoted NLRP3 degradation via enhancing its ubiquitination, which led to the inactivation of NLRP3/caspase-1/GSDMD and reduction of IL-1β secretion, thereby inhibiting macrophage pyroptosis and facilitating <i>M. tb</i> survival. Furthermore, Rv2647-mediated enhancement of NLRP3 ubiquitination and degradation depended on its binding to ISG15, competitively inhibiting ISGylation of NLRP3. The study identified Rv2647 as the key virulence factor that promoted <i>M. tb</i> survival by inhibiting macrophage pyroptosis, whose mechanism was to competitively inhibit the ISGylation of NLRP3 and enhance its ubiquitination, thus suppressing NLRP3/caspase-1/GSDMD-mediated pyroptosis. This finding highlighted Rv2647 as a promising drug target or vaccine antigen for tuberculosis prevention and control.</p>","PeriodicalId":17,"journal":{"name":"ACS Infectious Diseases","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Infectious Diseases","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acsinfecdis.5c00192","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Inflammasome-mediated pyroptosis and cytokine release are crucial host defenses against intracellular pathogens. Mycobacterium tuberculosis (M. tb) is a successful intracellular pathogen, and it is largely unclear how it evades immune clearance and persists in macrophages. This study investigated whether the Rv2647 protein acts as a key virulence factor of M. tb and explored the potential mechanism of inhibiting macrophage pyroptosis and promoting M. tb survival. The results showed Rv2647 promoted NLRP3 degradation via enhancing its ubiquitination, which led to the inactivation of NLRP3/caspase-1/GSDMD and reduction of IL-1β secretion, thereby inhibiting macrophage pyroptosis and facilitating M. tb survival. Furthermore, Rv2647-mediated enhancement of NLRP3 ubiquitination and degradation depended on its binding to ISG15, competitively inhibiting ISGylation of NLRP3. The study identified Rv2647 as the key virulence factor that promoted M. tb survival by inhibiting macrophage pyroptosis, whose mechanism was to competitively inhibit the ISGylation of NLRP3 and enhance its ubiquitination, thus suppressing NLRP3/caspase-1/GSDMD-mediated pyroptosis. This finding highlighted Rv2647 as a promising drug target or vaccine antigen for tuberculosis prevention and control.
期刊介绍:
ACS Infectious Diseases will be the first journal to highlight chemistry and its role in this multidisciplinary and collaborative research area. The journal will cover a diverse array of topics including, but not limited to:
* Discovery and development of new antimicrobial agents — identified through target- or phenotypic-based approaches as well as compounds that induce synergy with antimicrobials.
* Characterization and validation of drug target or pathways — use of single target and genome-wide knockdown and knockouts, biochemical studies, structural biology, new technologies to facilitate characterization and prioritization of potential drug targets.
* Mechanism of drug resistance — fundamental research that advances our understanding of resistance; strategies to prevent resistance.
* Mechanisms of action — use of genetic, metabolomic, and activity- and affinity-based protein profiling to elucidate the mechanism of action of clinical and experimental antimicrobial agents.
* Host-pathogen interactions — tools for studying host-pathogen interactions, cellular biochemistry of hosts and pathogens, and molecular interactions of pathogens with host microbiota.
* Small molecule vaccine adjuvants for infectious disease.
* Viral and bacterial biochemistry and molecular biology.