{"title":"EEG-based motor execution classification of upper and lower extremities using machine learning.","authors":"Ismail Korkmaz, Cengiz Tepe","doi":"10.1080/10255842.2025.2566260","DOIUrl":null,"url":null,"abstract":"<p><p>This study classifies upper- and lower-extremity motor execution from electroencephalography (EEG). We compared two feature extractors, statistical features and Common Spatial Patterns (CSP), and four classifiers: K-Nearest Neighbors, Linear Discriminant Analysis (LDA), Multilayer Perceptron, and Support Vector Machine. Metrics were accuracy, F1, precision, and recall. CSP with LDA achieved the best, most consistent performance (72.5% accuracy); statistical features underperformed. We report real-time feasibility benchmarks, post-cue time-window analysis, and significance tests for classifiers. Findings support BCI and neuroprosthesis development, while noting subject variability and dataset specificity. Future work is real-time use, cross-dataset generalization, and hybrid deep learning.</p>","PeriodicalId":50640,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering","volume":" ","pages":"1-17"},"PeriodicalIF":1.6000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Biomechanics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10255842.2025.2566260","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
This study classifies upper- and lower-extremity motor execution from electroencephalography (EEG). We compared two feature extractors, statistical features and Common Spatial Patterns (CSP), and four classifiers: K-Nearest Neighbors, Linear Discriminant Analysis (LDA), Multilayer Perceptron, and Support Vector Machine. Metrics were accuracy, F1, precision, and recall. CSP with LDA achieved the best, most consistent performance (72.5% accuracy); statistical features underperformed. We report real-time feasibility benchmarks, post-cue time-window analysis, and significance tests for classifiers. Findings support BCI and neuroprosthesis development, while noting subject variability and dataset specificity. Future work is real-time use, cross-dataset generalization, and hybrid deep learning.
期刊介绍:
The primary aims of Computer Methods in Biomechanics and Biomedical Engineering are to provide a means of communicating the advances being made in the areas of biomechanics and biomedical engineering and to stimulate interest in the continually emerging computer based technologies which are being applied in these multidisciplinary subjects. Computer Methods in Biomechanics and Biomedical Engineering will also provide a focus for the importance of integrating the disciplines of engineering with medical technology and clinical expertise. Such integration will have a major impact on health care in the future.