Mujeeb Ur Rahman, Junaid Ali Shah, Muhammad Nadeem Khan, Hazrat Bilal, Daochen Zhu, Zongjun Du, Da-Shuai Mu
{"title":"Innovative Approaches to Combat Antimicrobial Resistance: A Review of Emerging Therapies and Technologies.","authors":"Mujeeb Ur Rahman, Junaid Ali Shah, Muhammad Nadeem Khan, Hazrat Bilal, Daochen Zhu, Zongjun Du, Da-Shuai Mu","doi":"10.1007/s12602-025-10676-2","DOIUrl":null,"url":null,"abstract":"<p><p>The threat of antimicrobial resistance (AMR) presents a challenge in infectious diseases, leading to higher illness and deaths worldwide. No new antibiotic has been introduced, leaving healthcare systems vulnerable to resistant pathogens. Researchers are exploring innovative approaches to overcome this growing resistance crisis. One promising strategy is synergistic therapy using combined drugs to enhance efficacy and reduce resistance. Other approaches focus on targeting the specific enzymes or proteins responsible for resistance mechanisms, thereby neutralizing the defense strategies of microorganisms. Advances in drug delivery systems have also shown promise in improving the effectiveness of existing antimicrobial agents. Biotechnological breakthroughs, such as bacteriophages and antibodies, have seen partial clinical implementation, while newer approaches like antimicrobial peptides (AMPs), lysins, and probiotics are still under development. Emerging technologies such as CRISPR-Cas and engineered phages demonstrate significant potential in preclinical studies, offering precision targeting of resistance genes and pathogen-specific lysis, respectively. However, their translational success hinges on overcoming delivery challenges, scalability, and regulatory hurdles. Additionally, physicochemical methods that disrupt microbial activity are being explored as alternative treatments. While innovative therapies like phage-derived lysins and CRISPR-Cas systems show promise in preclinical models, their clinical impact remains to be validated through large-scale trials. Their integration into mainstream medicine will depend on addressing practical challenges such as manufacturing consistency, cost considerations, and real-world efficacy assessments. These efforts are crucial for addressing the growing threat of AMR and advancing more effective, sustainable infection control strategies in clinical settings.</p>","PeriodicalId":20506,"journal":{"name":"Probiotics and Antimicrobial Proteins","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probiotics and Antimicrobial Proteins","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12602-025-10676-2","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The threat of antimicrobial resistance (AMR) presents a challenge in infectious diseases, leading to higher illness and deaths worldwide. No new antibiotic has been introduced, leaving healthcare systems vulnerable to resistant pathogens. Researchers are exploring innovative approaches to overcome this growing resistance crisis. One promising strategy is synergistic therapy using combined drugs to enhance efficacy and reduce resistance. Other approaches focus on targeting the specific enzymes or proteins responsible for resistance mechanisms, thereby neutralizing the defense strategies of microorganisms. Advances in drug delivery systems have also shown promise in improving the effectiveness of existing antimicrobial agents. Biotechnological breakthroughs, such as bacteriophages and antibodies, have seen partial clinical implementation, while newer approaches like antimicrobial peptides (AMPs), lysins, and probiotics are still under development. Emerging technologies such as CRISPR-Cas and engineered phages demonstrate significant potential in preclinical studies, offering precision targeting of resistance genes and pathogen-specific lysis, respectively. However, their translational success hinges on overcoming delivery challenges, scalability, and regulatory hurdles. Additionally, physicochemical methods that disrupt microbial activity are being explored as alternative treatments. While innovative therapies like phage-derived lysins and CRISPR-Cas systems show promise in preclinical models, their clinical impact remains to be validated through large-scale trials. Their integration into mainstream medicine will depend on addressing practical challenges such as manufacturing consistency, cost considerations, and real-world efficacy assessments. These efforts are crucial for addressing the growing threat of AMR and advancing more effective, sustainable infection control strategies in clinical settings.
期刊介绍:
Probiotics and Antimicrobial Proteins publishes reviews, original articles, letters and short notes and technical/methodological communications aimed at advancing fundamental knowledge and exploration of the applications of probiotics, natural antimicrobial proteins and their derivatives in biomedical, agricultural, veterinary, food, and cosmetic products. The Journal welcomes fundamental research articles and reports on applications of these microorganisms and substances, and encourages structural studies and studies that correlate the structure and functional properties of antimicrobial proteins.