Karthik Ananth Mani , Lokesh Kumar , Nelson Barrios , Sachin Agate , Ashutosh Mittal , John Yarbrough , Hasan Jameel , Lucian Lucia , Lokendra Pal
{"title":"Emergence of deep eutectic solvents (DES): chemistry, preparation, properties, and applications in biorefineries and critical materials","authors":"Karthik Ananth Mani , Lokesh Kumar , Nelson Barrios , Sachin Agate , Ashutosh Mittal , John Yarbrough , Hasan Jameel , Lucian Lucia , Lokendra Pal","doi":"10.1016/j.pmatsci.2025.101586","DOIUrl":null,"url":null,"abstract":"<div><div>The emergence of renewable deep eutectic solvents (DES) as clean and efficient catalysts and solvents has created new opportunities for lignocellulosic biorefineries and critical material sectors, including chemical, energy, pharmaceutical, textile, and hydrometallurgical industries. This review provides an in-depth overview of DES, covering their chemistry, classifications, preparation methods, processing characteristics, and recyclability, while highlighting their unique attributes and industry relevant applications. Emphasis is placed on the integration of DES into advanced biorefinery systems, focusing on their tunable physicochemical and thermodynamic properties for biomass pretreatment and the production of value-added products. The review explores how DES can be tuned for selective dissolution of biomass components and evaluates production and valorization of DES-derived biochemicals, with attention to lignin extraction mechanisms and conversion of biomass into bioproducts and biofuels. Beyond biorefineries, the scope extends to DES applications in electrochemical energy devices, where they serve as electrolytes, synthesis media for electrode materials, and leaching agents in battery recycling. The multifunctional roles of DES in pharmaceutical, hydrometallurgical, and textile sectors are also explored for contributions to sustainable processing. Finally, the review identifies future research directions, outlining benefits, challenges, and knowledge gaps, for continued industrial development.</div></div>","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":"157 ","pages":"Article 101586"},"PeriodicalIF":40.0000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079642525001641","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The emergence of renewable deep eutectic solvents (DES) as clean and efficient catalysts and solvents has created new opportunities for lignocellulosic biorefineries and critical material sectors, including chemical, energy, pharmaceutical, textile, and hydrometallurgical industries. This review provides an in-depth overview of DES, covering their chemistry, classifications, preparation methods, processing characteristics, and recyclability, while highlighting their unique attributes and industry relevant applications. Emphasis is placed on the integration of DES into advanced biorefinery systems, focusing on their tunable physicochemical and thermodynamic properties for biomass pretreatment and the production of value-added products. The review explores how DES can be tuned for selective dissolution of biomass components and evaluates production and valorization of DES-derived biochemicals, with attention to lignin extraction mechanisms and conversion of biomass into bioproducts and biofuels. Beyond biorefineries, the scope extends to DES applications in electrochemical energy devices, where they serve as electrolytes, synthesis media for electrode materials, and leaching agents in battery recycling. The multifunctional roles of DES in pharmaceutical, hydrometallurgical, and textile sectors are also explored for contributions to sustainable processing. Finally, the review identifies future research directions, outlining benefits, challenges, and knowledge gaps, for continued industrial development.
期刊介绍:
Progress in Materials Science is a journal that publishes authoritative and critical reviews of recent advances in the science of materials. The focus of the journal is on the fundamental aspects of materials science, particularly those concerning microstructure and nanostructure and their relationship to properties. Emphasis is also placed on the thermodynamics, kinetics, mechanisms, and modeling of processes within materials, as well as the understanding of material properties in engineering and other applications.
The journal welcomes reviews from authors who are active leaders in the field of materials science and have a strong scientific track record. Materials of interest include metallic, ceramic, polymeric, biological, medical, and composite materials in all forms.
Manuscripts submitted to Progress in Materials Science are generally longer than those found in other research journals. While the focus is on invited reviews, interested authors may submit a proposal for consideration. Non-invited manuscripts are required to be preceded by the submission of a proposal. Authors publishing in Progress in Materials Science have the option to publish their research via subscription or open access. Open access publication requires the author or research funder to meet a publication fee (APC).
Abstracting and indexing services for Progress in Materials Science include Current Contents, Science Citation Index Expanded, Materials Science Citation Index, Chemical Abstracts, Engineering Index, INSPEC, and Scopus.