Synergistic atomic-scale design realizes enhanced optical and infrared radiative properties in ZrO2/SBA-15 porous composites

IF 9.7 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Xinyu Wang , Yuzhi Zhang , Maofei Zhang , Rui Sun , Binghao Wang , Jiayu Ma , Hongyu Gu , Lingnan Wu , Lixin Song
{"title":"Synergistic atomic-scale design realizes enhanced optical and infrared radiative properties in ZrO2/SBA-15 porous composites","authors":"Xinyu Wang ,&nbsp;Yuzhi Zhang ,&nbsp;Maofei Zhang ,&nbsp;Rui Sun ,&nbsp;Binghao Wang ,&nbsp;Jiayu Ma ,&nbsp;Hongyu Gu ,&nbsp;Lingnan Wu ,&nbsp;Lixin Song","doi":"10.1016/j.mtphys.2025.101881","DOIUrl":null,"url":null,"abstract":"<div><div>The development of materials with both high solar reflectance and strong mid-infrared emissivity remains a major challenge. In this work, we report a ZrO<sub>2</sub>/SBA-15 hierarchical porous composite synthesized through a one-pot copolymerization strategy. By introducing Zr atoms into the SBA-15 framework and validating the mechanism using first-principles calculations, we achieve synergistic optimization of optical and structural properties. The incorporation of Zr suppresses defect states near the Fermi level, leading to a widened bandgap and enhanced reflectance in the UV–Vis region. The optimized 1.0ZrO<sub>2</sub>/SBA-15 composite exhibits an average solar reflectance of 96.8 % across the 0.3–2.5 μm wavelength range and an emissivity of 0.986 in the 8–13 μm range. This study demonstrates an atomic-scale structural design strategy that combines experimental synthesis with electronic structure calculations, offering new insights into the rational development of inorganic porous composites with enhanced optical performance.</div></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"58 ","pages":"Article 101881"},"PeriodicalIF":9.7000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542529325002378","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The development of materials with both high solar reflectance and strong mid-infrared emissivity remains a major challenge. In this work, we report a ZrO2/SBA-15 hierarchical porous composite synthesized through a one-pot copolymerization strategy. By introducing Zr atoms into the SBA-15 framework and validating the mechanism using first-principles calculations, we achieve synergistic optimization of optical and structural properties. The incorporation of Zr suppresses defect states near the Fermi level, leading to a widened bandgap and enhanced reflectance in the UV–Vis region. The optimized 1.0ZrO2/SBA-15 composite exhibits an average solar reflectance of 96.8 % across the 0.3–2.5 μm wavelength range and an emissivity of 0.986 in the 8–13 μm range. This study demonstrates an atomic-scale structural design strategy that combines experimental synthesis with electronic structure calculations, offering new insights into the rational development of inorganic porous composites with enhanced optical performance.
协同原子尺度设计实现ZrO2/SBA-15多孔复合材料光学和红外辐射性能的增强
开发既具有高太阳反射率又具有强中红外发射率的材料仍然是一个重大挑战。在这项工作中,我们报道了一种通过一锅共聚策略合成的ZrO2/SBA-15分层多孔复合材料。通过将Zr原子引入SBA-15框架并使用第一性原理计算验证机制,我们实现了光学和结构性能的协同优化。Zr的掺入抑制了费米能级附近的缺陷态,导致带隙变宽,UV-Vis区的反射率增强。优化后的1.0ZrO2/SBA-15复合材料在0.3 ~ 2.5 μm波长范围内的平均太阳反射率为96.8%,在8 ~ 13 μm波长范围内的发射率为0.986。本研究展示了一种原子尺度的结构设计策略,将实验合成与电子结构计算相结合,为合理开发具有增强光学性能的无机多孔复合材料提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Today Physics
Materials Today Physics Materials Science-General Materials Science
CiteScore
14.00
自引率
7.80%
发文量
284
审稿时长
15 days
期刊介绍: Materials Today Physics is a multi-disciplinary journal focused on the physics of materials, encompassing both the physical properties and materials synthesis. Operating at the interface of physics and materials science, this journal covers one of the largest and most dynamic fields within physical science. The forefront research in materials physics is driving advancements in new materials, uncovering new physics, and fostering novel applications at an unprecedented pace.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信