Solution‐Processed Bi2S3 Nanostructures for Flexible Memory and Neuromorphic Computing

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Sayali Shrishail Harke, Omesh Kapur, Peng Dai, Tongjun Zhang, Bingkai Ding, Bohao Ding, Ruomeng Huang, Chitra Gurnani
{"title":"Solution‐Processed Bi2S3 Nanostructures for Flexible Memory and Neuromorphic Computing","authors":"Sayali Shrishail Harke, Omesh Kapur, Peng Dai, Tongjun Zhang, Bingkai Ding, Bohao Ding, Ruomeng Huang, Chitra Gurnani","doi":"10.1002/aelm.202500370","DOIUrl":null,"url":null,"abstract":"The rapid advancement of wearable computing and edge AI technologies is driving the need for low‐temperature, flexible, and neuromorphic‐compatible electronic materials. In this work, the successful low‐temperature deposition of Bi<jats:sub>2</jats:sub>S<jats:sub>3</jats:sub> thin films via an in situ solvothermal method using the single‐source precursor (SSP) [Bi(S<jats:sub>2</jats:sub>P(OC<jats:sub>3</jats:sub>H₇)<jats:sub>2</jats:sub>)<jats:sub>3</jats:sub>] is reported. This solution‐processed approach enables the formation of high‐quality, crystalline, and stoichiometric Bi<jats:sub>2</jats:sub>S<jats:sub>3</jats:sub> films over a broad temperature window (140–200 °C), compatible with a range of substrates including silicon, polyimide, and PET. Leveraging this deposition technique, Bi<jats:sub>2</jats:sub>S<jats:sub>3</jats:sub>‐based memristors are fabricated on both rigid and flexible substrates. The devices exhibit stable resistive switching behavior and demonstrate mechanical and electrical robustness under stress conditions. Furthermore, the memristors effectively emulate long‐term synaptic plasticity, achieving high learning accuracy. These findings establish SSP‐derived Bi<jats:sub>2</jats:sub>S<jats:sub>3</jats:sub> films as a promising material platform for next‐generation flexible neuromorphic computing and memory technologies.","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":"18 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aelm.202500370","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid advancement of wearable computing and edge AI technologies is driving the need for low‐temperature, flexible, and neuromorphic‐compatible electronic materials. In this work, the successful low‐temperature deposition of Bi2S3 thin films via an in situ solvothermal method using the single‐source precursor (SSP) [Bi(S2P(OC3H₇)2)3] is reported. This solution‐processed approach enables the formation of high‐quality, crystalline, and stoichiometric Bi2S3 films over a broad temperature window (140–200 °C), compatible with a range of substrates including silicon, polyimide, and PET. Leveraging this deposition technique, Bi2S3‐based memristors are fabricated on both rigid and flexible substrates. The devices exhibit stable resistive switching behavior and demonstrate mechanical and electrical robustness under stress conditions. Furthermore, the memristors effectively emulate long‐term synaptic plasticity, achieving high learning accuracy. These findings establish SSP‐derived Bi2S3 films as a promising material platform for next‐generation flexible neuromorphic computing and memory technologies.
溶液处理的Bi2S3纳米结构用于灵活记忆和神经形态计算
可穿戴计算和边缘人工智能技术的快速发展推动了对低温、柔性和神经形态兼容电子材料的需求。在这项工作中,报告了使用单源前驱体(SSP) [Bi(S2P(OC3H₇)2)3]通过原位溶剂热法成功地低温沉积Bi2S3薄膜。这种溶液处理方法能够在宽温度窗(140-200°C)内形成高质量,结晶和化学计量的Bi2S3薄膜,与包括硅,聚酰亚胺和PET在内的一系列衬底兼容。利用这种沉积技术,可以在刚性和柔性衬底上制造基于Bi2S3的忆阻器。该器件表现出稳定的电阻开关行为,并在应力条件下表现出机械和电气稳健性。此外,记忆电阻器有效地模拟了长期突触可塑性,实现了较高的学习精度。这些发现确立了SSP衍生的Bi2S3薄膜作为下一代柔性神经形态计算和存储技术的有前途的材料平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Electronic Materials
Advanced Electronic Materials NANOSCIENCE & NANOTECHNOLOGYMATERIALS SCIE-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.00
自引率
3.20%
发文量
433
期刊介绍: Advanced Electronic Materials is an interdisciplinary forum for peer-reviewed, high-quality, high-impact research in the fields of materials science, physics, and engineering of electronic and magnetic materials. It includes research on physics and physical properties of electronic and magnetic materials, spintronics, electronics, device physics and engineering, micro- and nano-electromechanical systems, and organic electronics, in addition to fundamental research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信