Data-Driven Innovation for Trustworthy AI

IF 1.4 2区 社会学 0 HUMANITIES, MULTIDISCIPLINARY
L. Siddharth , Jianxi Luo
{"title":"Data-Driven Innovation for Trustworthy AI","authors":"L. Siddharth ,&nbsp;Jianxi Luo","doi":"10.1016/j.sheji.2025.06.002","DOIUrl":null,"url":null,"abstract":"<div><div>Global concerns over the trustworthiness of rapidly proliferating artificial intelligence (AI)-centric artifacts have led to generic institutional recommendations for trustworthy AI, which have yet to be operationalized and integrated with design and innovation processes. We leverage the double hump model of data-driven innovation to propose and illustrate diverse data-driven approaches for identifying and evaluating opportunities, and generating and evaluating concepts for trustworthy AI. These approaches are expected to operationalize the institutional recommendations of trustworthy AI. Building on existing frameworks for classifying and managing risks associated with AI, we advocate for an ontological basis for trustworthy AI to enable fine-grained, computational assessments of AI-centric artifacts, their domains, and the organizations that develop or manage them.</div></div>","PeriodicalId":37146,"journal":{"name":"She Ji-The Journal of Design Economics and Innovation","volume":"11 3","pages":"Pages 261-283"},"PeriodicalIF":1.4000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"She Ji-The Journal of Design Economics and Innovation","FirstCategoryId":"90","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405872625000437","RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"HUMANITIES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Global concerns over the trustworthiness of rapidly proliferating artificial intelligence (AI)-centric artifacts have led to generic institutional recommendations for trustworthy AI, which have yet to be operationalized and integrated with design and innovation processes. We leverage the double hump model of data-driven innovation to propose and illustrate diverse data-driven approaches for identifying and evaluating opportunities, and generating and evaluating concepts for trustworthy AI. These approaches are expected to operationalize the institutional recommendations of trustworthy AI. Building on existing frameworks for classifying and managing risks associated with AI, we advocate for an ontological basis for trustworthy AI to enable fine-grained, computational assessments of AI-centric artifacts, their domains, and the organizations that develop or manage them.
可信赖人工智能的数据驱动创新
全球对快速扩散的以人工智能(AI)为中心的人工制品的可信度的担忧,导致了关于可信赖的人工智能的通用机构建议,这些建议尚未与设计和创新过程进行操作和整合。我们利用数据驱动创新的双驼峰模型来提出和说明各种数据驱动的方法,用于识别和评估机会,以及生成和评估可信赖的人工智能概念。这些方法有望实现可信赖的人工智能的机构建议。在现有的分类和管理与人工智能相关的风险框架的基础上,我们提倡为可信赖的人工智能建立一个本体论基础,以实现对以人工智能为中心的工件、它们的领域以及开发或管理它们的组织的细粒度、计算性评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.20
自引率
5.00%
发文量
16
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信