Jakob Škarabot, James A Beauchamp, Gregory E P Pearcey
{"title":"Human motor unit discharge patterns reveal differences in neuromodulatory and inhibitory drive to motoneurons across contraction levels.","authors":"Jakob Škarabot, James A Beauchamp, Gregory E P Pearcey","doi":"10.1152/jn.00249.2025","DOIUrl":null,"url":null,"abstract":"<p><p>All motor commands converge onto motor units (MUs), which transduce the signals into mechanical actions of muscle fibres. This process is highly non-linear due to combinations of ionotropic (excitatory/inhibitory) and metabotropic (neuromodulatory) inputs. Neuromodulatory inputs facilitate dendritic persistent inward currents, which introduce non-linearities in MU discharge patterns and provide insights into the structure of motor commands. Here, we investigated the relative contribution of neuromodulation and the pattern of inhibition to modulate human MU discharge patterns with contraction forces up to 70% maximum. Leveraging MU discharge patterns identified from three human muscles (tibialis anterior - TA, and vastus lateralis and medialis), we show that with increased contraction force, the onset-offset discharge rate hysteresis (ΔF) increased whilst ascending MU discharge patterns become more linear, with lower slopes. In a follow-up experiment, we demonstrated that the observations of increased ΔF and more linear ascending MU discharge patterns with greater contraction force are maintained even when accounting for contraction duration and rate of force increase. We then reverse-engineered TA MU discharge patterns using highly realistic in silico motoneuron pools to substantiate the inferred physiological mechanisms from human recordings. We demonstrate a sharply restricted solution space, whereby the contraction force-induced changes in experimentally obtained MU discharge patterns can only be recreated with increased neuromodulation and a more reciprocal (i.e. push-pull) inhibitory pattern. In summary, our experimental and computational data suggest that neuromodulation and inhibitory patterns are uniquely shaped to generate discharge patterns that support force increases across a large proportion of the motor pool's recruitment range.</p>","PeriodicalId":16563,"journal":{"name":"Journal of neurophysiology","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neurophysiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/jn.00249.2025","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
All motor commands converge onto motor units (MUs), which transduce the signals into mechanical actions of muscle fibres. This process is highly non-linear due to combinations of ionotropic (excitatory/inhibitory) and metabotropic (neuromodulatory) inputs. Neuromodulatory inputs facilitate dendritic persistent inward currents, which introduce non-linearities in MU discharge patterns and provide insights into the structure of motor commands. Here, we investigated the relative contribution of neuromodulation and the pattern of inhibition to modulate human MU discharge patterns with contraction forces up to 70% maximum. Leveraging MU discharge patterns identified from three human muscles (tibialis anterior - TA, and vastus lateralis and medialis), we show that with increased contraction force, the onset-offset discharge rate hysteresis (ΔF) increased whilst ascending MU discharge patterns become more linear, with lower slopes. In a follow-up experiment, we demonstrated that the observations of increased ΔF and more linear ascending MU discharge patterns with greater contraction force are maintained even when accounting for contraction duration and rate of force increase. We then reverse-engineered TA MU discharge patterns using highly realistic in silico motoneuron pools to substantiate the inferred physiological mechanisms from human recordings. We demonstrate a sharply restricted solution space, whereby the contraction force-induced changes in experimentally obtained MU discharge patterns can only be recreated with increased neuromodulation and a more reciprocal (i.e. push-pull) inhibitory pattern. In summary, our experimental and computational data suggest that neuromodulation and inhibitory patterns are uniquely shaped to generate discharge patterns that support force increases across a large proportion of the motor pool's recruitment range.
期刊介绍:
The Journal of Neurophysiology publishes original articles on the function of the nervous system. All levels of function are included, from the membrane and cell to systems and behavior. Experimental approaches include molecular neurobiology, cell culture and slice preparations, membrane physiology, developmental neurobiology, functional neuroanatomy, neurochemistry, neuropharmacology, systems electrophysiology, imaging and mapping techniques, and behavioral analysis. Experimental preparations may be invertebrate or vertebrate species, including humans. Theoretical studies are acceptable if they are tied closely to the interpretation of experimental data and elucidate principles of broad interest.