{"title":"Neurodetector: EEG-Based Cognitive Assessment Using Event-Related Potentials as a Virtual Switch.","authors":"Ryohei P Hasegawa, Shinya Watanabe","doi":"10.3390/brainsci15090931","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background/Objectives:</b> Motor decline in older adults can hinder cognitive assessments. To address this, we developed a brain-computer interface (BCI) using electroencephalography (EEG) and event-related potentials (ERPs) as a motor-independent EEG Switch. ERPs reflect attention-related neural activity and may serve as biomarkers for cognitive function. This study evaluated the feasibility of using ERP-based task success rates as indicators of cognitive abilities. The main goal of this article is the development and baseline evaluation of the Neurodetector system (incorporating the EEG Switch) as a motor-independent tool for cognitive assessment in healthy adults. <b>Methods:</b> We created a system called Neurodetector, which measures cognitive function through the ability to perform tasks using a virtual one-button EEG Switch. EEG data were collected from 40 healthy adults, mainly under 60 years of age, during three cognitive tasks of increasing difficulty. <b>Results:</b> The participants controlled the EEG Switch above chance level across all tasks. Success rates correlated with task difficulty and showed individual differences, suggesting that cognitive ability influences performance. In addition, we compared the pattern-matching method for ERP decoding with the conventional peak-based approaches. The pattern-matching method yielded a consistently higher accuracy and was more sensitive to task complexity and individual variability. <b>Conclusions:</b> These results support the potential of the EEG Switch as a reliable, non-motor-dependent cognitive assessment tool. The system is especially useful for populations with limited motor control, such as the elderly or individuals with physical disabilities. While Mild Cognitive Impairment (MCI) is an important future target for application, the present study involved only healthy adult participants. Future research should examine the sources of individual differences and validate EEG switches in clinical contexts, including clinical trials involving MCI and dementia patients. Our findings lay the groundwork for a novel and accessible approach for cognitive evaluation using neurophysiological data.</p>","PeriodicalId":9095,"journal":{"name":"Brain Sciences","volume":"15 9","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467680/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/brainsci15090931","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Background/Objectives: Motor decline in older adults can hinder cognitive assessments. To address this, we developed a brain-computer interface (BCI) using electroencephalography (EEG) and event-related potentials (ERPs) as a motor-independent EEG Switch. ERPs reflect attention-related neural activity and may serve as biomarkers for cognitive function. This study evaluated the feasibility of using ERP-based task success rates as indicators of cognitive abilities. The main goal of this article is the development and baseline evaluation of the Neurodetector system (incorporating the EEG Switch) as a motor-independent tool for cognitive assessment in healthy adults. Methods: We created a system called Neurodetector, which measures cognitive function through the ability to perform tasks using a virtual one-button EEG Switch. EEG data were collected from 40 healthy adults, mainly under 60 years of age, during three cognitive tasks of increasing difficulty. Results: The participants controlled the EEG Switch above chance level across all tasks. Success rates correlated with task difficulty and showed individual differences, suggesting that cognitive ability influences performance. In addition, we compared the pattern-matching method for ERP decoding with the conventional peak-based approaches. The pattern-matching method yielded a consistently higher accuracy and was more sensitive to task complexity and individual variability. Conclusions: These results support the potential of the EEG Switch as a reliable, non-motor-dependent cognitive assessment tool. The system is especially useful for populations with limited motor control, such as the elderly or individuals with physical disabilities. While Mild Cognitive Impairment (MCI) is an important future target for application, the present study involved only healthy adult participants. Future research should examine the sources of individual differences and validate EEG switches in clinical contexts, including clinical trials involving MCI and dementia patients. Our findings lay the groundwork for a novel and accessible approach for cognitive evaluation using neurophysiological data.
期刊介绍:
Brain Sciences (ISSN 2076-3425) is a peer-reviewed scientific journal that publishes original articles, critical reviews, research notes and short communications in the areas of cognitive neuroscience, developmental neuroscience, molecular and cellular neuroscience, neural engineering, neuroimaging, neurolinguistics, neuropathy, systems neuroscience, and theoretical and computational neuroscience. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.