{"title":"NRGAMTE: Neurophysiological Residual Gated Attention Multimodal Transformer Encoder for Sleep Disorder Detection.","authors":"Jayapoorani Subramaniam, Aruna Mogarala Guruvaya, Anupama Vijaykumar, Puttamadappa Chaluve Gowda","doi":"10.3390/brainsci15090985","DOIUrl":null,"url":null,"abstract":"<p><strong>Background/objective: </strong>Sleep is significant for human mental and physical health. Sleep disorders represent a crucial risk to human health, and a large portion of the world population suffers from them. The efficient identification of sleep disorders is significant for effective treatment. However, the precise and automatic detection of sleep disorders remains challenging due to the inter-subject variability, overlapping symptoms, and reliance on single-modality physiological signals.</p><p><strong>Methods: </strong>To address these challenges, a Neurophysiological Residual Gated Attention Multimodal Transformer Encoder (NRGAMTE) model was developed for robust sleep disorder detection using multimodal physiological signals, including Electroencephalogram (EEG), Electromyogram (EMG), and Electrooculogram (EOG). Initially, raw signals are segmented into 30-s windows and processed to capture the significant time- and frequency-domain features. Every modality is independently embedded by a One-Dimensional Convolutional Neural Network (1D-CNN), which preserves signal-specific characteristics. A Modality-wise Residual Gated Cross-Attention Fusion (MRGCAF) mechanism is introduced to select significant cross-modal interactions, while the learnable residual path ensures that the most relevant features are retained during the gating process.</p><p><strong>Results: </strong>The developed NRGAMTE model achieved an accuracy of 94.51% on the Sleep-EDF expanded dataset and 99.64% on the Cyclic Alternating Pattern (CAP Sleep database), significantly outperforming the existing single- and multimodal algorithms in terms of robustness and computational efficiency.</p><p><strong>Conclusions: </strong>The results shows that NRGAMTE obtains high performance across multiple datasets, significantly improving detection accuracy. This demonstrated their potential as a reliable tool for clinical sleep disorder detection.</p>","PeriodicalId":9095,"journal":{"name":"Brain Sciences","volume":"15 9","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12468897/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/brainsci15090985","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Background/objective: Sleep is significant for human mental and physical health. Sleep disorders represent a crucial risk to human health, and a large portion of the world population suffers from them. The efficient identification of sleep disorders is significant for effective treatment. However, the precise and automatic detection of sleep disorders remains challenging due to the inter-subject variability, overlapping symptoms, and reliance on single-modality physiological signals.
Methods: To address these challenges, a Neurophysiological Residual Gated Attention Multimodal Transformer Encoder (NRGAMTE) model was developed for robust sleep disorder detection using multimodal physiological signals, including Electroencephalogram (EEG), Electromyogram (EMG), and Electrooculogram (EOG). Initially, raw signals are segmented into 30-s windows and processed to capture the significant time- and frequency-domain features. Every modality is independently embedded by a One-Dimensional Convolutional Neural Network (1D-CNN), which preserves signal-specific characteristics. A Modality-wise Residual Gated Cross-Attention Fusion (MRGCAF) mechanism is introduced to select significant cross-modal interactions, while the learnable residual path ensures that the most relevant features are retained during the gating process.
Results: The developed NRGAMTE model achieved an accuracy of 94.51% on the Sleep-EDF expanded dataset and 99.64% on the Cyclic Alternating Pattern (CAP Sleep database), significantly outperforming the existing single- and multimodal algorithms in terms of robustness and computational efficiency.
Conclusions: The results shows that NRGAMTE obtains high performance across multiple datasets, significantly improving detection accuracy. This demonstrated their potential as a reliable tool for clinical sleep disorder detection.
期刊介绍:
Brain Sciences (ISSN 2076-3425) is a peer-reviewed scientific journal that publishes original articles, critical reviews, research notes and short communications in the areas of cognitive neuroscience, developmental neuroscience, molecular and cellular neuroscience, neural engineering, neuroimaging, neurolinguistics, neuropathy, systems neuroscience, and theoretical and computational neuroscience. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.