{"title":"The Importance of Multifaceted Approach for Accurate and Comprehensive Evaluation of Oxidative Stress Status in Biological Systems.","authors":"Borut Poljšak, Polona Jamnik, Irina Milisav","doi":"10.3390/antiox14091083","DOIUrl":null,"url":null,"abstract":"<p><p>Oxidative stress is caused by an imbalance between the formation of reactive oxygen species (ROS) and the activity of antioxidant defense system, which disrupts redox signaling and causes molecular damage. While there are numerous methods to measure oxidative stress, the complex and dynamic nature of ROS production and antioxidant reactions requires a multi-faceted approach. Direct methods such as electron spin resonance (ESR) and fluorescent probes measure ROS directly but are limited by the short lifespan of certain species. Indirect methods such as lipid peroxidation markers (e.g., malondialdehyde, MDA), protein oxidation (e.g., carbonyl content), and DNA damage (e.g., 8-oxo-dG) provide information on oxidative damage, but they do not capture the real-time dynamics of ROS. The antioxidant defense system, which includes enzymatic components such as superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), further complicates assessment, as it responds dynamically to oxidative challenges. Furthermore, the compartmentalized nature of ROS production in organelles and tissues coupled with the temporal variability of oxidative damage and repair underscores the need to integrate multiple assessment methods. This commentary highlights the limitations of using single assays and emphasizes the importance of combining complementary techniques to achieve a comprehensive assessment of oxidative stress. A multi-method approach ensures accurate identification of ROS dynamics, antioxidant responses, and the extent of oxidative damage, providing crucial insights into redox biology and its impact on health and disease.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"14 9","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12466452/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antioxidants","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/antiox14091083","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Oxidative stress is caused by an imbalance between the formation of reactive oxygen species (ROS) and the activity of antioxidant defense system, which disrupts redox signaling and causes molecular damage. While there are numerous methods to measure oxidative stress, the complex and dynamic nature of ROS production and antioxidant reactions requires a multi-faceted approach. Direct methods such as electron spin resonance (ESR) and fluorescent probes measure ROS directly but are limited by the short lifespan of certain species. Indirect methods such as lipid peroxidation markers (e.g., malondialdehyde, MDA), protein oxidation (e.g., carbonyl content), and DNA damage (e.g., 8-oxo-dG) provide information on oxidative damage, but they do not capture the real-time dynamics of ROS. The antioxidant defense system, which includes enzymatic components such as superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), further complicates assessment, as it responds dynamically to oxidative challenges. Furthermore, the compartmentalized nature of ROS production in organelles and tissues coupled with the temporal variability of oxidative damage and repair underscores the need to integrate multiple assessment methods. This commentary highlights the limitations of using single assays and emphasizes the importance of combining complementary techniques to achieve a comprehensive assessment of oxidative stress. A multi-method approach ensures accurate identification of ROS dynamics, antioxidant responses, and the extent of oxidative damage, providing crucial insights into redox biology and its impact on health and disease.
AntioxidantsBiochemistry, Genetics and Molecular Biology-Physiology
CiteScore
10.60
自引率
11.40%
发文量
2123
审稿时长
16.3 days
期刊介绍:
Antioxidants (ISSN 2076-3921), provides an advanced forum for studies related to the science and technology of antioxidants. It publishes research papers, reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.