Pauline Labbé, Eric Thorin, Nathalie Thorin-Trescases
{"title":"The Dual Role of NOX4 in Cardiovascular Diseases: Driver of Oxidative Stress and Mediator of Adaptive Remodeling.","authors":"Pauline Labbé, Eric Thorin, Nathalie Thorin-Trescases","doi":"10.3390/antiox14091137","DOIUrl":null,"url":null,"abstract":"<p><p>NADPH oxidase 4 (NOX4) plays a crucial role in regulating cardiac function and pathology through its involvement in oxidative stress, fibrosis, and maladaptive remodeling. Studies have demonstrated that NOX4 is upregulated in response to various cardiovascular stressors, including heart failure, myocardial infarction, arrhythmias, and diabetes. This upregulation contributes to detrimental processes like fibrosis, hypertrophy, and inflammation, which are hallmarks of cardiovascular diseases. Inhibition or knockout of NOX4 has shown promise in mitigating these pathological changes, suggesting that NOX4 represents a potential therapeutic target for treating heart disease. However, NOX4's role is not entirely negative. It also plays a protective role in the heart, supporting myocardial remodeling and angiogenesis and regulating cardiac energy metabolism. Its constitutive ROS production and ability to respond to environmental cues like hypoxia help maintain cellular homeostasis and facilitate adaptive responses to stress. The impact of NOX4 on cardiac health depends not only on its expression level but also on the nature of the stress, the duration of activation, and the balance between protective signaling and oxidative injury. Collectively, the findings suggest that NOX4 functions as a redox sensor, modulating cellular responses to fluctuations in oxidative stress by signaling the need to re-establish redox homeostasis. The ultimate impact of cardiac NOX4 activity, whether protective or deleterious, is highly context-dependent and should not be evaluated through a singular interpretative framework. In conclusion, NOX4 is a dual-function enzyme that can both exacerbate and protect against cardiac pathology, making it a promising, though complex, therapeutic target for various cardiovascular diseases.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"14 9","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12466861/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antioxidants","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/antiox14091137","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
NADPH oxidase 4 (NOX4) plays a crucial role in regulating cardiac function and pathology through its involvement in oxidative stress, fibrosis, and maladaptive remodeling. Studies have demonstrated that NOX4 is upregulated in response to various cardiovascular stressors, including heart failure, myocardial infarction, arrhythmias, and diabetes. This upregulation contributes to detrimental processes like fibrosis, hypertrophy, and inflammation, which are hallmarks of cardiovascular diseases. Inhibition or knockout of NOX4 has shown promise in mitigating these pathological changes, suggesting that NOX4 represents a potential therapeutic target for treating heart disease. However, NOX4's role is not entirely negative. It also plays a protective role in the heart, supporting myocardial remodeling and angiogenesis and regulating cardiac energy metabolism. Its constitutive ROS production and ability to respond to environmental cues like hypoxia help maintain cellular homeostasis and facilitate adaptive responses to stress. The impact of NOX4 on cardiac health depends not only on its expression level but also on the nature of the stress, the duration of activation, and the balance between protective signaling and oxidative injury. Collectively, the findings suggest that NOX4 functions as a redox sensor, modulating cellular responses to fluctuations in oxidative stress by signaling the need to re-establish redox homeostasis. The ultimate impact of cardiac NOX4 activity, whether protective or deleterious, is highly context-dependent and should not be evaluated through a singular interpretative framework. In conclusion, NOX4 is a dual-function enzyme that can both exacerbate and protect against cardiac pathology, making it a promising, though complex, therapeutic target for various cardiovascular diseases.
AntioxidantsBiochemistry, Genetics and Molecular Biology-Physiology
CiteScore
10.60
自引率
11.40%
发文量
2123
审稿时长
16.3 days
期刊介绍:
Antioxidants (ISSN 2076-3921), provides an advanced forum for studies related to the science and technology of antioxidants. It publishes research papers, reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.